
NASA Contractor Report 181827

FORMAL VERIFICATION OF

AI SOFTWARE

(NASA-CR-181827) PORaAL VERIPICATIO# - OF AI
SOFTYARB F i n a l Report (sa1 I n t e r n a t i o n a l

Corp.) 156 p C S C L 098

N 8 9- 24 8 1 1

Unclas
G 3 / 6 1 0217233

John Rushby, R. Alan Whitehurst
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025

NASA Contract 18226 (Task 5)
February 1989

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

,

Abstract

The application of formal verification techniques to AI software, particularly
expert systems, is investigated. Constraint satisfaction and model inversion
are identified as two formal specification paradigms for different classes of
expert systems. A formal definition of consistency is developed, and the
notion of approximate semantics is introduced. Examples are given of how
these ideas can be applied in both declarative and imperative forms.

Contents

1 Introduction 1
1.1 Formal Verification . 2
1.2 AI Software and Expert Systems 4

2 Requirements and Speciilcations 7
2.1 Safety and Liveness Properties 8
2.2 Classification of Expert System Applications 9

2.2.1 Constraint Satisfaction Problems 10
2.2.2 Model Inversion Problems 10

2.2.2.1 Abduction 13
2.3 Formal Requirements Specifications 13

3 Languages 15
3.1 Declarative Semantics . 15
3.2 Operational Semantics . 16
3.3 Approximate Semantics . 19

3.3.1 Approximate Declarative Semantics 19
3.3.2 Approximate Imperative Semantics 24

4 Examples 27
4.1 Introduction . 27
4.2 Example-Constraint Satisfaction 27

4.2.1 Problem Description 28
4.2.2 Rule-Based Implementation 28
4.2.3 Requirements . 30
4.2.4 Formal Specification 32
4.2.5 Observations . 36

4.3 Example-Model Inversion . 36

i

ii Contents

4.3.1 Problem Description 37
4.3.2 The Formal Model . 37
4.3.3 Rule-Based Implementation 38
4.3.4 Requirements and Validation 39
4.3.5 Observations . 42

5 Conclusions and Recommendations 45

A P-BEST 49
A.l How P-BEST Works . 49

A. l . l Facts . 51
A.1.2 Rule/Fact Bindings 52

A.2 P-BEST Components . 53
A.2.1 The Language . 53
A.2.2 The Compiler . 53
A.2.3 The Debugger . 54

B EHDM 55
B.l The EHDM Specification Language and Logic 55
B.2 The Theorem Prover of EHDM 56
B.3 The EHDM Environment . 57

B.3.1 The Context and Library Manager 58
B.3.2 The Configuration Control Tool 58

C Tic-Tac-Toe Rule base 61

D Tic-Tac-Toe Specifications 75
arrays . 76
data . 77
difh . 78
facts . 79
sets . 80
states . 82
ttt-ptypes . 83
ttt-rlsl . 86
ttt-rls2 . 90
ttt.rls3 . 94
ftt.rls4 . 97
guarded-ops . 100

Con tents ...
111

safe-ttt . 104
initial-state . 108
initial-proof . 109
gwr-proof . 111
gwc-proof . 113
gwd.proof . 115

E Backward-Chaining System 117

F Heuristics for Electrical System Diagnosis 123

G Derived Expert System Rules for Diagnosis 127

H Electrical System Formal Specification 135
components . 136
enginemodel . 138
test . 139
predict . 140

Bibliography 145

Chapter 1

Introduction

Almost all computer software harbors faults; those faults can lead to failure,
and failure can have serious consequences. Stringent measures are (or should
be) taken to ensure that software faults in critical systems will not lead to
failurea that could endanger life or national security, cause harm to the
environment, or have other undesired consequences disproportionate to the
benefits provided by normal operation. The goal in software development
for critical systems should be to develop dependuble software-mftware for
which justifiable reliance can be placed on the quality of service it delivers.

There are two main approaches for achieving dependability: fault ezclu-
eion, which aims to prevent the occurrence of faults, and fault tolerunce,
which seeks to detect and recover from the manifestations of faults before
they can lead to failure.’ Fault exclusion techniques include systematic
design methodologies intended to prevent faults from being introduced in
the first place, combined with thorough testing and examination procedures
intended to identify and eliminate those faults that slip through the first
stage. Fault tolerance is based on redundancy and run-time checking; be-
cause all software faults are design faults, the redundant components cannot
be simple replicatea of the original, but must be ‘diverse designs” [SI.

Both fault exclusion and fault tolerance techniques can benefit from the
observation that dependability is not the same as reliability: it may not be
necessary to exclude or tolerate all faults, but only those with unacceptable
consequences [35]. That is to say, dependability can be regarded as reliability
with respect to unacceptable failures.

‘What we have called fault exclusion is generally termed fault avoidance; we prefer the
former term since it haa a more active and positive connotation.

1

2 Chapter 1. htroduction

Dependability requirements for life-critical systems (such as fly-by-wire
digital control for passenger aircraft) are onerous. For example, the FAA
requires failures that could endanger a civil aircraft to be “extremely im-
probable” and “not expected to occur within the total life span of the whole
fleet of the modeln-the FAA has suggested that this should be interpreted
as a probability of less than in a 10 hour flight, or lo-’* per hour
of flight. Substantiating reliabilities such as these through testing is infea-
sible. Furthermore, experimental and theoretical results cast doubt on the
failure-independence assumption that underlies the belief that software fault
tolerance techniques can deliver the required dependability [12,21,32, 371.

1.1 Formal Verification

Formal verification is a technique that can, in principle, guarantee the ab-
sence of faults. Formal verification demonstrates consistency between two
different descriptions of a program. Often, one description is the program
code itself and the other is its specification, although the method can be
applied equally well to two specifications at different levels of detail. For-
mal verification treats specifications and programa as formal, mathematical
texts, and the demonstration of consistency between them takes the form
of a mathematical proof. Formal verification steps can be “stacked” on top
of each other, so that a hierarchy of increasingly detailed specifications car-
ries the demonstration of consistency all the way from a highly abstract
“requirements” statement down to executable code. This guarantees the
“correctness” of the executable code provided:

1. The notion of consistency that is employed is appropriate for the in-
tended interpretation.

2. The requirements statement accurately captures the real (dependabil-
ity) requirements on the system.

3. The meaning ascribed to the program code during its verification ac-
curately reflects its behavior during execution.

4. The proofs are performed without error.

Consistency is usually equated with logical implication: it is proved that
the properties of a lower level imply those of the upper one. In other words,
it is proven that the lower levels do at least that which is specified in the

1.1. Formal Verification 3

upper levels. This excludes faults of omission, but not necessarily those of
commission.

A requirements statement is just a set of marks on paper; there can
be no conclusive demonstration that it is an accurate formulation of the
dependability objectives for the system. The best that can be done is to
employ notational formalisms that are expressive, precise and perspicuous,
and to subject the requirements statement to considerable scrutiny. This
may take the form of testing, either of the requirements specification itself
(if the specification language is executable), or of a simulation or “rapid
prototype,” or of analytic scrutiny. The latter can be “formal testing” that
involves proving conjectures (“if the requirements are right, then I ought to
be able to prove that the following must be true”), checks for consistency
and completeness, and informal review.

The problem of ensuring that the meaning ascribed to a program dur-
ing its verification (i.e., its formal semantics) accurately reflects its behavior
during execution (Le., its operational semantics) is a difficult one. One ap-
proach is to carry the formal verification down through the specification and
implementation of the programming language itself, its support software,
and the hardware on which it runs until the bottom-level assumptions are
descriptions of elementary logic gates. There has been substantial progress
recently on each of these levels [8, 14, 15, 30, 39, 401, and some pioneer-
ing demonstrations that they can be “stacked.” For the near-term future,
however, it is reasonable to assume that the correctness of programming
language implementations will be subject only to informal arguments.

It is in order to avoid the fourth class of error, errors made during logical
reasoning, that truly formal, and mechanically assisted, verification is gener-
ally recommended. The theorems that need to be proven during verification
are numerous, massively detailed, and of little intrinsic interest. Experience
has shown that semiformal proofs, as employed in mathematics journals, are
unreliable when applied to theorems such as these. Consequently, the use
of mechanical theorem proving (or proof checking) is attractive.

The inherent limitations to formal verification identified above are likely
to be exacerbated in practice by compromises (typically incomplete appli-
cation, or verification of only limited properties) imposed by technical or
resource limitations. Nonetheless, formal verification should be considered
an important component in the demonstration of dependability for critical
systems, and an even more important component in the process of con-
structing such systems. When integrated with the design and development
process (rather than being an after-the-fact analysis), formal verification

4 Chapter 1. Introduction

can contribute significantly to the development of dependable systems by
encouraging systematic and conscious thought, and a preference for simple
and perspicuous design and implementation.

1.2 AI Software and Expert Systems

This report is concerned with the application of formal verification tech-
niques to AI software in general and expert systems in particular. By A I
software we mean software that uses techniques from the field of Artificial
Intelligence; Genesereth and Nilsson [24] give an excellent modern introduc-
tion to such techniques. Expert systems can be characterized as AI software
that use highly problem-specific information (as opposed to general laws)
in order to achieve performance comparable to human specialits in limited
problem domains. Expert systems employ “surface” rather than ‘deep” for-
mulations of knowledge; they codify empirical associations, special cases,
and exceptions. These are often expressed in the form of “if-then” produc-
tion rules, giving rise to the “rule-based expert systems” that are becoming
widespread. A good survey of expert systems is given by Buchanan and
Smith [ll]; Harmon and King [28] provide a more elementary overview.

On the face of it, expert systems seem unlikely candidates for formal
verification. In the first place, their requirements statements are notoriously
vague: “build a system to do what Bill does” is not a gross parody of the
specification for an expert system. Even when requirements are specific,
they may not be amenable to formal analysis. For example, “build a system
for loan approval that delivers no more than 4% bad loans by value” is not
a requirement that can be verified analytically.

Second, the developmental process used for expert systems is largely
experimental in nature; the knowledge base is refined “in response to errors
exhibited in solving test cases” [ll, page 42). The hierarchy of specification
and design that is the foundation of systematic engineering for conventional
software, and of its formal verification, is absent for most expert systems.
As Buchanan and Smith observe [ll, page 471:

Often when one begins designing an expert system, neither the
problem nor the knowledge required to solve it is precisely speci-
fied. Initial descriptions of the problem are oversimplified, so the
complexity becomes known only as early versions of the system
solve simple versions of the problem. Expert systems are said to
approach competence incrementally.

1.2. AI Software and Expert Systems 5

Parnas puts it less sympathetically [43]:

The rules that one obtains by studying people turn out to be
inconsistent, incomplete, and inaccurate. Heuristic programs are
developed by a trial-and-error process in which a new rule is
added whenever one finds a case that is not handled by the old
rules. This approach usually yields a program whose behavior is
poorly understood and hard to predict.

Third, conventional verification is concerned with algorithmic software.
The premise of conventional development methodology and of verification
is that the goal of the exercise is to produce an efficient implementation of
a systematic method (an algorithm) for satisfying the requirements. Expert
systems do not satisfy this premise; solutions are found by search rather
than algorithmically. The knowledge base is not a conventional program,
but a collection of heuristic information used to guide the search.

Finally, the languages in which expert systems and their knowledge bases
are encoded have not been developed with formal analysis in mind.

Chapter 2

Requirements and
Specificat ions

The absence of precise requirements and specification documents for much
AI software reflects the genuine difficulty in stating A priori the expecta-
tions and requirements for a system whose capabilities will evolve through
a development process that is partly experimental in nature. However, if
formal verification is to be applied to AI software, precise requirements and
specifications are a necessity. We have proposed a possible solution to this
dilemma in a previous report [48].

The basis of our proposal is first to separate the “inherently AI“ aspects
of AI software from the more conventional aspects-aspects that should be
amenable to conventional software engineering and quality assurance. To
this end, we distinguish two sets of requirements and specifications for AI
software: the competency requirements and the service requirements.

Competency requirements pertain to those dimensions of the overall re-
quirements that concern “knowledge” or appeal to comparison with human
skills. We accept that such requirements may of necessity be vague and
incomplete. Service requirements cover all other requirements and should
be amenable to statements no less rigorous and formal than those for con-
ventional software. Service requirements should include descriptions of the
input and output formats expected, the processing rate, the explanation fa-
cilities required, and so on. Service requirements and their decomposition
through levels of specification should be traceable, verifiable, and testable
just like those of conventional software.

7

8 Chapter 2. Requirements and Specifications

The present investigation is concerned with verification of competency
requirements. Because we have already conceded that these may be vague
and incomplete, it may seem contradictory to talk about their formal ver-
ification. However, it is not necessary to verify full functional correctness
in order to accomplish something useful. For many critical applications, it
is not necessary that the system should not fail, only that it should not
fail “badly.” Accordingly, we further subdivide competency requirements
into “desired” and “minimum” requirements. The desired competency re-
quirement will often be defined relative to human expertise and describes
how well the system is expected to perform. The minimum competency
requirement, on the other hand, defines how badly it is allowed to perform.

Whereas desired competency requirements may be hard to state explic-
itly, there is some hope that minimum competency requirements may some-
times be capable of precise definition. For example, one of the expert systems
developed at SRI, by the Information Sciences and Technology Division, is
the Automated Air Load Planning System-MPS [5]. It is used to pro-
duce schedules and layouts for loading army divisions and their equipment
(tanks, helicopters, etc.) onto air transports. One of the things to be consid-
ered is the unloading of the aircraft, especially if this is to be performed in
flight, using parachute drops. As the heavy equipment is first moved around
inside the aircraft prior to being dropped, and then actually dropped, the
aerodynamic stability of the aircraft must remain undisturbed. Specifying
the desired competency of AALPS is obviously difficult-we want a near-
optimum loading plan, but an optimum loading plan is hard to define, and
it is even harder to determine whether a given plan is optimal. But the
minimum competency requirement can be given quite a sharp statement:
the aerodynamic trim of the aircraft must remain within certain limits at
all times during all stages of unloading in flight.

We believe that minimum competency requirements may be able to c a p
ture certain desired “safety” properties for AI software and that such re-
quirements can often be cast as formal requirements specifications. In the
following sections we will look more closely at the formal definition of min-
imum competency requirements for different classes of AI software.

2.1 Safety and Liveness Properties

All extensional properties of programs are conjunctions of safety and live-
ness properties [4]. A liveness property asserts that something good must

2.2. CZassification of Expert System Applications 9

eventually happen; termination is the archetypal liveness property. A safety
property asserts that some bad thing does not occur during execution. Par-
tial correctness is the archetypal safety property: the “bad thing” that must
not occur is termination with the wrong answer. The term “safety property”
is a technical one; such properties need have nothing to do with safety as it
is commonly interpreted-though we believe that many safety properties in
the conventional sense of the term can be captured formally by properties
satisfying its technical sense.

We can formalize these notions as follows. Let I and 0 be the input and
output domains of the program P. The input/output behavior of P can then
be represented by a relation on I x 0: P (i , 0) will be true if execution of P
can terminate with output o E 0 when given input i E I. P may not be
intended to work for all possible inputs, so we let V be a predicate on I that
identifies “valid” inputs. If we now let C be a predicate on 0 that identifies
outputs satisfying the desired safety property, then the specification that P
satisfies C for inputs satisfying V is simply:2

2.2 Classification of Expert System Applications

Applications of expert systems can be divided into those concerned with
problems of interpretation (analysis) and those concerned with problems of
construction (synthesis). Buchanan and Smith [ll, pages 28 and 291 tabulate
some of the major examples of each kind. Among the most common of
the analytic systems are those concerned with equipment monitoring, fault
diagnosis, and the screening and interpretation of data. Expert systems
for synthesis include those concerned with planning, scheduling, loading
(M P S is in this category), configuration, and design. We believe that
another way of looking at this dichotomy between analytic and synthetic
expert systems sheds more light on their possible requirements specifications.
Our alternative dichotomy is that between constraint satisfaction and model
inversion.

‘We use relationa rather than functions (i.e., we do not write P (i) = 0) to allow the

‘We uae 1, A, V, and 3 to denote negation, conjunction (“anda), disjunction (“or“),
possibility of nondeterministic behavior.

and implication, respectively.

10 Chapter 2. Requirements and Specifications

2.2.1 Constraint Sat is fact ion Problems

A constraint is a predicate over the output variables of a program. The
constraint satisfaction problem is to find an assignment of values to those
variables that satisfies the constraint. The important point about constraint
satisfaction problems is that we can check whether purported solutions do
indeed satisfy the constraint. Optimization problems are a variation on con-
straint satisfaction. We want a solution that not only satisfies the constraint,
but also maximizes (or minimizes) some function. It may not be feasible to
check whether a purported solution to an optimization problem is indeed o p
timal, but it is at least possible to check whether it satisfies the constraint.
Often, truly optimal solutions are not necessary; in these cases bounds on
acceptable values may be characterized as part of the constraint to be satis-
fied (e.g., “find a loading plan that uses no more than three aircraft”). We
will call these bounded constraint satisfaction problems. We contend that
minimum competency requirements for synthetic expert systems can often
be formulated as bounded constraint satisfaction problems-and specifica-
tions for such problems can be formalized as safety properties. For example,
let P be the AALPS program, U a definition of “valid AALPS input” and
C a formalization of the constraint “the loading plan places the center of
gravity of each aircraft within acceptable limits.” Then the simple safety
property

vi E I , o E 0, (i) A P (i , 0) 3 c(o)

expresses the requirement that if U P S is given valid input, and if it
terminates, then any loading plan produced must place the center of gravity
of each aircraft within acceptable limits.

2.2.2 Model Inversion Problems

A model is a simplified representation or description of a system or com-
plex entity, eipecially one designed to facilitate calculations or predictions”
(Collins English Dictionary).

Computer models can range from systems of equations capable of yield-
ing highly accurate and precise numerical predictions (e.g., for orbital me-
chanics) to descriptions that provide only qualitative information. To qualify
as a model, a system representation or description should have some explana-
tory or causal value: it should in some sense describe how the system being
modeled actually works. A model has much in common with a physical

2.2. Classification of Expert System Applications 11

theory, and need not be correct or complete in order to be useful- long
as its predictions are adequate for their purpose.

Models have parameters-quantities whose values differ from one in-
stance of the model to another. In the case of a model for an automobile
electrical system, for example, the parameters might include the voltage at
the battery, and whether or not the starter motor is broken. Usually, cer-
tain parameters can be identified as inputs (i.e., their values are determined
by factors external to the system being modeled), and others as outputs.
Inputs can be regarded as ‘causes” and outputs as ‘effects”; the model is
then a mechanism for reasoning from causes to effects.

Computer models are often used in this predictive manner: given values
for the input parameters, the model is used to predict values for the output
parameters. Such predictions are usually determined by direct calculation
and are performed by conventional software.

is what we call the problem of “model inversion.” Whereas problems of
prediction can usually be solved by direct calculation, problems of model
inversion must often be solved by search4ifferent values for the input pa-
rameters are tried in turn until a configuration is found that leads to a
prediction matching the observed behavior. Of course, such explicit search-
ing will often be unacceptably slow, so heuristic techniques may be employed
to perform the search in an “intelligent” manner. Such heuristic techniques
can be used in two ways: either they can be used in conjunction with the
explicit model, or they can be used instead of it. In the first case, heuristics
can be used to suggest values for the input parameters, the output values
can be computed, and their divergence from those actually observed can
be used by the heuristics to adjust the input parameters. (Of course, more
sophisticated arrangements may sometimes be possible, in which the heuris-
tics are more intimately connected to the structure of the model.) In the
second case, heuristics are used to suggest values for the input values and
these are accepted without further checks.

We contend that many, if not most, analytic expert systems can be
characterized as heuristic model inversion procedures of this second kind-
except that the model that they invert is never constructed explicitly. We
further contend that the way to produce precise specifications for such expert
systems is to construct the missing model.

We can then say that an analytic expert system is consistent with its
model if the former is an inverse of the latter-that is, if outputs of the

The inverse problem-that of finding causes that explain observed effects-

12 Chapter 2. Requirements and Specifications

expert system, when supplied as inputs to the model, generate predicted
effects that match those observed.

This can be expressed formally as follows. Let C and E be the domains
of “causes” and “effects,” respectively. Let M, a predicate on C x E, be
an explicit model (from causes to effects), and let P, a predicate on E x C,
be an expert system (that reasons from effects to causes). Then the expert
system P is consistent with the model M if

Vc E C, e E E : P (e , c) 3 M (c , e)

It is easy to construct variationa on this definition. For example, if 2 is a
relation on effects, with the interpretation that e’ 2 e means the predicted
effects e’ do not contradict observed effects e, then we can define a weaker
notion of consistency as follows:

Vc E C , e E E : P(e , c) 3 3e‘ : M(c, e’) A e’ J e

W e can also say that P is complete with respect to M if
V c E C , e E E : M(c ,e) 3 P(e , c)

Consider an expert system to diagnose faults’in the electrical subsystem
of an automobile, for example. This will typically be a rule-based system
containing rules such as

if the starter motor turns

then
and there is no spark at plugs

there is a problem in the HT Coil

An explicit model, on the other hand, would link the components of the
subsystem in cause-effect relationships in some suitable degree of detail. A
highly detailed model might account for actual voltage, current, and resis-
tance values, whereas a qualitative model might simply deal with the signs
(i.e., positive or negative) of various quantities and their derivatives. For
some diagnostic problems, a simple model of fault propagation is all that is
needed (i.e., a component fault is assumed to affect all sensors “downstream”
from that component). A simple model for the automobile electrical system
might note that the battery is “upstream” from both the starter motor and
the HT coil, and the HT coil is upstream from the spark plugs. (This sort
of model is sometimes called a “causal net”). The expert system rule given
above is consistent with this model. The rule

2.3. Formal Requirements Specifications 13

if the s t a r t e r motor does not turn
then

there is a problem i n the ba t te ry

is weakly consistent with the model if we define e’ e to mean that the
observations predicted abnormal in e‘ are a superset of those observed ab-
normal in e.

2.2.2.1 Abduct ion

There are many different representations for the many different types of
models-differential equations, directed graphs, and predicate calculus, for
example. In the case of predicate calculus representations, model-inversion
can be described by a form of logical inference known as “abduction.” Given
the premise (Vz : P(z) 2 Q(z)), the familiar process of deduction allows us
to reason from the observation P(a) to the conclusion Q(u). Abduction, on
the other hand, allows us to reason from the observation Q(a) to the possible
“explanation” P(u). With a complex model, there can be many abductive
explanations for a given observation and various criteria have been devised
for selecting a preferred explanation [52].

Abduction has been proposed as a technique for model-based diagno-
sis [17, 411 and methods for mechanizing abductive inference have been
developed [16, 45, 521. We believe that abductive techniques can also serve
to specify minimum competency requirements for certain model inversion
problems.

2.3 Formal Requirements Specifications

We have introduced two classes of problems and shown how formal speci-
fications can be given for each. We contended that constraint satisfaction
could provide formal specifications for expert systems that perform synthesis
while model inversion serves that purpose for analytic systems. Of course,
this dichotomy is a little simplistic: some aspects of analytic expert systems
may be best specified in terms of constraint satisfaction, while synthetic
systems may have some model inversion attributes. And some requirements
may lend themselves to neither constraint satisfaction nor model inversion
formulations. (For example, planning probably requires the introduction of

14 Chapter 2. Requirements and Specifications

a third problem class.) Nonetheless, we believe that our two classes of prob-
lem formulation are adequate to specify the requirements of many expert
system applications.

The question remains, do our formulations make “good” requirements
statements? One of the principal characteristics desired of a requirements
formulation is that it should be comprehensible: those responsible for the
procurement and quality assurance of a system must be able to scrutinize its
requirement statement and convince themselves that they truly understand
its implications and limitations. We believe that the statements that any
results produced by an expert system are to be consistent with “this set of
constraints” or “that model” do satisfy this desideratum. A model that pro-
vides some plausible and systematic causal connection between inputs and
outputs is far more comprehensible and defensible-and surely represents
more “knowledge”-than a set of associations encoded as rules.

If constraints and models can serve so well as the requirements specifi-
cations for expert systems, why do we build rule-based expert systems at
all? Why not build constraint satisfaction and model inversion procedures?
We are convinced that the development of such procedures is the correct
direction to pursue if reliable expert-like systems are to be produced. There
are, in fact, substantial bodies of work on constraint satisfaction (the book
by h l e r [34] is a good introduction) and qualitative modeling (see the book
edited by Bobrow [lo]). Diagnosis of physical systems is a field in which
direct model-based procedures have been studied extensively (see biter’s
work [46], for example, and the survey by Davis and Hamscher [18]).

In the short term, however, it is likely that expert systems will be able to
outperform systems based on direct constraint satisfaction or model inver-
sion. For one thing, many problems of interest lack good models (strategic
warfare and medical diagnosis, for example) and a good ad hoc expert sys-
tem may be able to do better than a simplistic model or constraint-based
system. However, we believe that even simplistic models and constraints
serve to establish useful minimum competency requirements for such expert
systems.

Chapter 3

Languages

The languages in which expert systems are commonly written, whether
“rule-based,” “frame-based,” or “object-oriented” have not been developed
with formal analysis in mind. In particular, they lack formal semantics, and
generally lack the regularity and conceptual simplicity that would make the
construction of formal semantics feasible.

For concreteness, we will use forward-chaining production rule languages
as our paradigm for languages used in the implementation of expert systems.
These languages (for example, OPS5 [23]) are appropriate when all input
data are known in advance, or are easy to collect, and when there are rela-
tively few hypotheses to be explored. Such are likely to be the case in many
near-term space and aviation applications of expert systems, where input
data are usually provided by sensors.

3.1 Declarative Semantics

There is some similarity between rule-based notations and logic program-
ming languages such as Prolog [13] and OBJ [26]. A pure logic programming
language (e.g., OBJ) has a declarative semantics: a program can be inter-
preted as a theory in the logic, and computation is equivalent to deduction
in that logic. The behavior of programs in execution can be predicted by
proving theorems within the logic. Impure logic programming languages
(e.g., Prolog) compromise the declarative semantics in order to improve
performance and to provide for the deliberate “control” of execution behav-
ior. Thus, most Prolog interpreters omit the “occurs check” (which renders
them unsound), use depth-first search (which renders them incomplete), add

15

16 Chapter 3. Languages

“negation as failure” (whose logical interpretation is a controversial topic
[22]), and provide extra-logical “control” constructs such as “cut,” “assert,”
and “retract.” (Although these features destroy hopes for a declarative se-
mantics, it is possible to give them a denotational semantics [19].)

Production-rule languages add further control and other features (e.g.,
nonmonotonicity) that take them even further away from pure logic pro-
gramming languages-and compromise still further any declarative seman-
tics. Buchanan and Smith justify this as follows [ll, page 341:

Many designers of expert systems are uncomfortable with math-
ematical logic as a representation language because it lacks ex-
pressive power. Numerous extensions must be made to express
some of the concepts that are frequently used in applications:
uncertainty, strategy knowledge, and temporal relations. Some
logicians are uncomfortable with reasoning that is not theorem
proving and with knowledge bases that are not axiomatic systems
that allow proofa of consistency and completeness. The search
for new logical formalisms that are more powerful than predicate
calculus reflects the tension between simple, well-understood for-
malisms and expressive power.

3.2 Operational Semantics

If the need to consider control strategies and working memory makes the
search for declarative semantics for rule-based languages rather unpromising,
perhaps it will be better to consider more operational semantics-that is,
semantics that explicitly consider the existence of “state” and control flow.

Hoare introduced a notation and deductive system for reasoning about
the partial correctness of imperative programs in his seminal paper [29].

In this notation, if C is a program, and P and Q are conditions on
the program variables used in C, then the notation {P}C{Q} expresses the
safety property that if execution of C begins in a state (i.e., an assignment
of values to program variables) satisfying P, und if ezeeution terrninutes,
then it must do so in a state satisfying Q.

An alternative notation that makes the system state explicit is sometimes
preferable. In this notation, conditions are modeled as predicates on states
(assignments of values to program variables), and programs as relations on
states. If s and t are states, then P(s) is true if state s satisfies condition P,
and C(s,t) is true if program C, when started in state s, can terminate in

3.2. Operational Semantics 17

state t . The connection between the two notations (see, for example, [27])
is given by

{P}c{p} Vs,t : P(s) A C (8 , t) 3 a(t)

‘Proof rules” for the elementary constructs of a programming language,
together with rules for their combination, allow properties of imperative
programs to be proved. An example of a proof rule is that for the ‘while”
loop:

{P A B}C{P)
{P} while 0 do C{P A 70)

The hypotheses of the rule are written above the line, the conclusions are
written below it. A formula P such that { P A 0}C{ P} is called an invariant
of C for 0.

The difficulty in applying these ideas to production-rule languages is that
the control structures of production-rule system are less explicit and reg-
ular than “while” loops, and the control (Le., conflict resolution) strategies
used are quasi-nondeterministic. It is possible to give Hoare-style semantics
for pure nondeterministic constructs (e.g., for Dijkstra’s guarded command
language [20]’), but the strategies used in production-rule languages are so
operational that they defy tractable formalization.

It ia important to understand just how complex some of these control
features are; a brief description of the operation of OPS5 should make it
clear.

OPS5 programs consist of rules called productions, each of which com-
prises a condition part (called the LHS) and an action part (called the RHS).
Programs operate on a global database called working memory by repeat-
edly performing a sequence of actions called the recognize-act cycle:

Match: evaluate the LHSs of the productions to determine which are sat-
isfied by the current contents of working memory (the set of eligible
productions so formed is called the conflict set).

Conflict Resolution: select one production from the conflict set; if the
conflict set is empty, return control to the user.

Act: Perform the actions specified in the RHS of the selected production
(this is called firing the production).

‘Dijkstra uses .weakest preconditions’ rather than Hoare logic, but the differences
between these formalisms are not significant to our discussion.

18 Chapter 3. Languages

The elementa of the conflict set are called instantiations; they consist of a
production and a binding of working memory elements to the variables in
its LHS. The conflict resolution strategy is the following2:

1. Discard from the conflict set those instantiations that have already
fired. (The definition of “already fired” is complex; roughly speaking,
it means that there is some n such that this instantiation has been
present in every one of the previous n confiict sets, and that it was
selected for firing in one of those sets.)

2. Compare the recencies (the cycle on which they last changed) of the
working memory elements matching the first condition elements in
each instantiation. Retain those with the most recent elements.

3. Order the instantiations on the basis of the recencies of the remaining
working memory elements using the following algorithm to compare
pairs of instantiations. First compare the most recent elements from
the two instantiations. If one is more recent than the other, the in-
stantiation with that element dominates. If the two are equally recent,
compare the second most recent elements from each instantiation, and
so on, until either a difference is found or one instantiation runs out of
elements. If one instantiation exhausts its elements before the other,
the unexhausted instantiation dominates.

4. If no single instantiation dominates all others under the previous rule,
use the one with the most conditions in its LHS; if that does not select
a unique rule, choose one arbitrarily.

Forgy [23] defends these rules on the grounds that “they make it easy to
add productions to an existing set and have the productions fire at the right
time, and because they make it easy to simulate common control constructs
such as loop and subroutine calls.” Anyone concerned with formal rea-
soning (or just reasoning) about rule based systems might wish that control
structures were explicit rather than “easy to simulate.” (The same argument
applied to imperative programming languages would justify the elimination
of all control structures except the “goto,” since it can also simulate those
control structures.)

Additional conflict resolution strategies that are commonly employed
include giving preference to rules according to their position in the rule-

’This is the strategy called MEA; OPS5 ale0 has a strategy called LEx--see 123).

3.3. Approximate Semantics 19

base (early rules have preference), or associating explicit priorities with rules
(rules with high priority have preference).

3.3 Approximate Semantics

The inescapable conclusion from the previous two sections is that the con-
struction of either declarative or Hoare-style semantics for current rule-based
languages is a hopeless task. In the long term, we expect that concern for
predictability and reliability will lead to the development of programming
languages with tractable semantics for expert system applications (just as
it has, to at least some extent, with conventional languages). In the near
term, however, we either have to accept something less than perfect, or give
UP.

Because we have already abandoned the attempt to prove correctness
for expert systems, being willing to settle instead for proofs of, possibly
modest, safety properties, it may be that merely “approximate semantics”
will suffice for our purposes.

Recall that the (exact) functional behavior of a program P is identi-
fied with the relation P(i ,o) . An approximate semantics will associate a
somewhat different relation Papprox(i, 0). To be useful, the approximate se-
mantics must be conservative-that is, they must not “underestimate” the
exact behavior (at least when applied to valid inputs). Thus we require:

It will then follow that safety properties established with respect to the
approximate semantics will hold for the exact semantics as well.

3.3.1 Approximate Declarative Semantics

We have seen that rule based languages differ from pure logic programming
languages most violently in providing implicit and explicit control over the
order in which rules are selected. (The other serious difference is that rule-
based languages allow values to be asserted and retracted; we will ignore
this issue for now.) If there were no conflict resolution strategy-i.e., if any
and all matching rules could fire-then we would be closer to a purely logical
interpretation of the rules. Now the effect of conflict resolution strategies is
to limit which rules can fire-so that fewer things will happen in the pres-
ence of conflict resolution than in its absence. This means that a logical

20 Chapter 3. Languages

interpretation of a rulebase (i.e., no codict resolution) should indeed pro-
vide a conservative approximate semantics. Unfortunately, it will often be
so conservative that nothing useful can be deduced. An example might help
make this clear.

Consider the following rules from a system to handle hospital admissions,
and suppose that conflict resolution is performed by giving priority to rules
according to the order in which they appear.

if head-in j ury(X)

then
and time-since-injury(X1 < 8

send-to(][) := emergency-room

if can-walk(l0
then

send-to(X) := waiting-room

Now suppose we would like to establish the safety property “anyone who
has had a head injury within the last 4 hours will be sent to the emergency
room.”

Interpreting the rules as a logical theory, we have

head-injury (X) h time-since-injury(X) < 8 3 send-to(X) = emergency-
room

can-walk(X) 3 send-to(X) = waiting-room

It is clear that we can establish our safety property from the first of
these formulas. However, because there is no ordering implied between the
formulas when interpreted in logic, “firing” the first does not preclude the
second one from firing also. Thus, if it happened that patient X was able to
walk, we might 0l80 conclude that he should be sent to the waiting room.
In approximating our rule base by a logical theory, we have lost too much
information. For the conflict resolution strategy considered in this example,
it is easy to see that the strategy can be encoded in the approximating
theory: we simply conjoin to the antecedent of each formula the negations
of the LHSs of earlier rules:

3.3. Approximate Semantics 21

head-injury(X) A time-since-injury(X) < 8 3 send-to(X) = emergency-
room

-t(head-injury(X) A time-since-injury(X) < 8) A can-walk(X) 3
send-to(X) = waiting-room

The dynamic nature of most other conflict resolution strategies precludes
such simple static representations, however.

Although simply regarding a rule base as a logical theory may provide
an excessively conservative semantics, it may still be possible to derive some
benefit from the exercise. Suppose we were to modify the theory by adding
clauses to the antecedents of its formulas until we were able to prove the
desired safety properties. This would make explicit the requirements on
the conflict resolution strategy to be employed-which could be valuable
information. Informal arguments could then be used to justify the differences
between the rules and the derived formulas (or the rules could be modified
to make them less dependent on the conflict resolution strategy).

Consistency

There is a flaw in this reasoning, however. If the derived theory is inconsis-
tent, then it can be used to prove any safety property whatsoever. Before
we proceed to analyze this issue, it will be helpful to review some of the
notation and terminology of logic.

A (propositional) theory 7 is simply a set of (propositional) formulas; a
formula ? is a theorem of 7 if 7 I- ?-that is, if any model of 7 is also a
model of 7. By the deduction theorem, this is equivalent to I- 7 ZI ?-that
is, 7 3 ? must be valid (true in all interpretations). If 7 is inconsistent,
then it has no model (by definition), so all interpretations will valuate 7 to
false, and hence 7 3 7 to true-whatever formula ? may be.

It seems, therefore, that we must check any theories derived from rule
bases for consistency before proceeding to draw any conclusions. In fact,
the situation is rather more complex than this. For the theory derived from
a rule base to be consistent simply means that it has a model (i.e., some
interpretation of its constant, function, and predicate symbols that valuate
all its formulas to true). However, it may be that the facts initially asserted
into the working memory of the expert system are inconsistent with any
models of its rule base. Again, we will be able to prove arbitrary formulas.
The explanation is, of course, that it is not the rule base alone that induces

22 Chapter 3. Languages

the theory corresponding to an expert system-it is the rule base plus the
initial facts.

This explains something that others have noted: the notions of inconsis-
tency employed in logic and in rule based expert systems do not coincide.
In logic, the following set of formulas is consistent

because both formulas evaluate to true in any interpretation that assigns
false to p . However, if these formulas are interpreted as rules, and p and
r are input variables assigned the value true, then both q and i q will be
asserted-an obvious contradiction. The problem here is that although the
rules are consistent on their own, they form an inconsistent theory when
combined with certain initial values. That is, the following “instantiated
theory” is inconsistent:

P ’ Q
p A r 3 ’ q

P
r

This observation allows us to define conektency for the theory corre-
sponding to a rule-based system as follows: let IO be any interpretation for
the inputs to the system (i.e., assignment of initial values): then there must
exist a model for the rule base (interpreted as a theory) that is an extension
to Io.

Several authors have proposed methods for testing rulebased systems
for consistency [9, 25, 42,531 but none of them present a rigorous definition
for rule-base consistency, though Ginsberg I251 does observe that it is dif-
ferent from the notion of consistency in a logical theory (the example above
is due to him). We therefore believe that ours is the first precise defini-
tion of consistency for rule-based systems. It should be possible to use our
definition to provide a proof of correctness for Ginsberg’s KB-Reduction al-

81f there ia a validity constraint on input values, then we can restrict the interpretations
to those that satisfy it.

3.3. Approximate Semcmtics 23

gorithm [25].‘ It should also be possible to accommodate the simpler forms
of nonmonotonic reasoning (such as the closed-world assumption).

The notion of consistency derived above is a logical one: it simply as-
sures us that there is some way of satisfying the rule base given any (valid)
assignment of values to the inputs, without assuming a particular conflict
resolution strategy. The “answer“ produced by the system will be (part of)
the interpretation that constitutes a model for the rule base. Now there
may be several models in general, and so several different sets of outputs
corresponding to the same inputs. This naturally prompts the introduction
of a second notion for consistency: if the same set of inputs can produce
several sets of outputs, then it may be desirable in many cases that each of
these sets of outputs should be “similar” or “consistent” with each other.5
That is, we should require:

where N denotes “similarity” (presumably an equivalence relation).
It is not clear how (or whether) one can verify this property of “output

consistency” in general; it is similar to “sensitivity” or “continuity”-the re-
quirement that inputs that are close together should generate outputs that
are also close together. Empirical tests seem the only plausible way to vali-
date such properties.* A property that is sometimes capable of verification is
the stronger one that the outputs corresponding to any set of inputs should
be unique. In the case of a rule-based system, this will be so if the order
in which rules are fired does not deet the final values produced. This lab
ter property is generally called the Church-Rosser property. Very effective
testa for the Church-Rower property are known for certain restricted log-
ics (e.g., the Knuth-Bendix procedure [33] for equational theories), together
with weaker results for more general cases (e.g., [47]). It is possible that
these techniques also could be adapted to restricted rule bases.

‘The methods of Suwa et al. [53] and Nguyen et al. [42] are so weak and ad hoc that
they do not require fnrther investigation. Bezem’s method [9] is simply an algorithm for
testing whether a particular initial interpretation 10 can be extended to a model for the
rule base.

‘This notion of consistency is likely to be particularly appropriate for analytic expert
syyrtems: how much trust should one place in a system that is capable of producing totally
different answers from the same inputs?

‘If the equivalence classes of the similarity relation can be identified with some pred-
icate, then the problem becomes one of constraint satisfaction-which we believe is
verifiable.

24 Chapter 3. Languages

Another property likely to be of some interest is completeness: a rule-
based system is incomplete if it can fail to assign a value to some output.
Analogous to our logical definition of inconsistency, we could say that the
theory corresponding to a rule base is incomplete if it has models in which
the interpretation of some output is unconstrained. It seems plausibIe that
the KB-Reducer algorithm of Ginsberg [25] can be extended to this case.

We began with the idea that it might be possible to interpret a rule base
as a logical theory and thereby deduce some approximate, but conservative,
properties. We have seen that it is necessary to ensure a strong form of
consistency for the theory so produced. Given such a consistent theory, it
may then be possible to prove that certain constraints will be satisfied in
any execution of the system. Performing such a proof might seem to require
general theorem proving capability. In fact, all the information required
is gathered as part of Ginsberg’s KEReducer consistency-checking proce-
dure. KB-Reduction is essentially a form of symbolic execution [31]; for
each ‘hypothesis”, ‘labels” are built up that indicate the combinations of
input values that will cause that hypothesis to be asserted. The label for
a hypothesis asserted on the right-hand side of a rule is computed by sym-
bolic evaluation of its left-hand side. For example, if the “partial labels” for
hypotheses D and A are respectively p V q and p, then the rule D A - A -+ B
will add 0, v q) A -p (which simplifies to q A ~ p) to the label for B. Thus, to
verify a constraint such as “anyone who has had a head injury within the
last 4 hours will be sent to the emergency room,” we simply check that the
label for “being sent to the emergency room” is implied by the condition
‘head injury within the last 4 hours.”

It should be perfectly straightforward to develop an implementation of
Ginsberg’s KEReducer procedure that supports this limited form of verifi-
cation. It should be noted that there is great similarity between these topics
and algorithms for rule-based systems and those for decision tables [36, 381.

3 3.2

While the investigation of approximate declarative semantics has shed some
light on the question of consistency, and suggests a way of verifying con-
straints for elementary rule bases, we believe that approximate imperative
semantics provides a more suitable base for verifying more complex proper-
ties. As with the declarative approach, the more complex forms of conflict
resolution will not be modeled, but the presence of an explicit state allows
operational constructs to be modeled more accurately. In particular, the as-

Approximat e Imperative Semantics

3.3. Approximate Semantics 25

signment of values to variables (and subsequent reassignment of new values)
is easily accommodated.

The semantics of an individual rule

ifC then A

can be modeled by the standard axiom

{P A C}A{P}
{P} if C then A{ P}

Here the predicate P is an invariant maintained by the rule. If a num-
ber of rules all maintain the same invariant, then their nondeterministic
combination will also maintain that invariant, as will the iteration of that
combination.

The basic idea for rule base verification using approximate imperative
semantics is to establish an invariant for the entire rule base and to verify,
using the rule above, that it is indeed an invariant for each rule in the rule
base. If the invariant is also guaranteed true for any valid input, then one
may conclude that it will be true when the rules terminate.

It might seem that any formula that is true of the inputs to the system,
and that is maintained true by all the rules in the system, can only encode a
very weak property. In a strict sense, this is obviously true, but a great deal
of information can be encoded in the invariant using control variables. These
are variables that record and control the progress of computation in the rule
base. When a rule that initiates a new stage of processing fires, it sets a
control variable to a particular value to indicate that fact. Some rules will
condition their LHSs on the values of control variables (e.g., if control-var =
x and other conditions then actions), so that they are eligible for execution
only during certain stages of processing. The system invariant can exploit
this attribute by having different components for different control values-
that is, it may have the form

control-var = x 3 invariant-component-x
A control-var = y 3 invariant-component-y

A control-var = z 3 invariant-component-z

Informal arguments will probably have to be used to argue that, on termin-
tion, the control variable will have a value associated with an "interesting"
component of the invariant.

26 Chapter 3. Languages

In the case of constraint satisfaction problems, the constraint will provide
the invariant, or at least one component of it, to be verified. For model
inversion problems, the invariant to be verified will be that the components
of the “answer” being constructed are consistent with the model employed.
In particular, the rule Vsymptoms then cause” should be supported by the
argument that in the explicit model, “cause” leads to “symptoms.” The next
chapter presents a preliminary experimental investigation into the utility of
these ideas.

Chapter 4

Examples

4.1 Introduction

In this chapter we report on some of our experiences and observations in
attempting to apply techniques proposed in this report to the verification of
rule-based expert systems. The experiments described in this chapter should
not be considered as indications of our current capabilities; rather, they serve
to illustrate what we believe to be some of the promising approaches and
interesting challenges concerned with expert system verification.

including the P-BEST expert system shell and the EHDM verification en-
vironment [55]. P-BEST is a forward-chaining production system that re-
sembles OPS5 [23] and other similar tools. For a more complete description
of the P-BEST environment, see Appendix A. EHDM is a formal specifica-
tion and verification environment constructed at SRI. For an introduction
to EHDM, see Appendix B.

These experiments were conducted using various notations and formalisms,

4.2 Example-Const raint Sat isfact ion

In this section, we consider the application of formal reasoning to the devel-
opment and verification of constraint-satisfaction type expert systems. The
example presented here considers the problem of constructing an expert
system that plays the game 'Tic-Tac-Toe."

27

28 Chapter 4. ExmpIes

4.2.1 Problem Description

The game of tic-tac-toe may be thought of as a constraint satisfaction prob-
lem. Given an arbitrary legal board configuration, the computer is required
to place a marker in a position such that a certain goal is achieved. We
considered the ‘classical” two-player version of tic-tac-toe as played on a
3x3 board (illustrated in Figure 4.1). The goal of the game is to place three

Figure 4.1: Tic-tac-toe Board Configuration

markers on the board so that they are in alignment either vertically, hor-
izontally, or diagonally, while preventing the opponent from placing three
markers in alignment. Play begins with an empty board, and proceeds as
alternating players place markers on the board until either: (a) some player
achieves the placement of three markers in a row, or (b) no remaining empty
positions exist.

4.2.2 Rule-Based Implementation

We implemented an initial rule base to play tic-tac-toe. To further constrain
the problem, we adopted the convention that the opponent would always get
the first move. In an effort to model the process of knowledge engineering,
in which insight into the problem space is gathered in a piecewise fashion,
we adopted a naive playing strategy that can be informally stated as follows:

0 If the computer can win (i.e., place a marker 80 that there are three
markers in a row, either vertically, horizontally, or diagonally), then
have the computer place the marker in the winning position and ter-
minate the game.

0 If the computer must block to prevent the opponent from winning,
then have the computer place a marker in the blocking position.

0 Otherwise, have the computer place a marker in one of the following
positions, arranged according to desirability: center, corner, middle.

4.2. Exampleconstraint Satisfaction 29

Using P-BEST, a forward-chaining expert system shell, we defined the
following fact templates. In P-BEST, a fact template must be declared for
each possible assertion. In the case of the tic-tac-toe example, there were
three possible types of assertions that could be made into the knowledge
base:

0 position assertions

0 turn assertions

0 opponent move assertions

Position assertions were used to represent the state of the playing board
at any given point during the game. There were exactly nine such assertions
at all times-one assertion for each of the nine possible positions on the
playing board. At the beginning of play, each of these assertions contained
the designation that the corresponding position was free of any marker. As
play progressed, the position assertions were altered to reflect when a marker
was placed in the corresponding location. Such markers were designated as
“opp” short for opponent, and ‘com” for computer.

Turn assertions were used to record whose turn it was at any given point
in the game and to keep track of how many turns had transpired.

Opponent-move assertions were used to communicate the intention of the
human opponent to the knowledge base. Incorporated into the knowledge
base were several rules that were responsible for querying for the opponent’s
move, checking its legality, and asserting A proper opponent-move assertion
into the knowledge base. Because these rules do not effect the behavior of the
program with respect to its strategic performance, they are not considered
in the subsequent analysis.

Figure 4.2, gives an example of what the declaration of these fact tem-
plates, called “ptypes” or predicute-type8 in the terminology of P-BEST,
looks like. For a more complete description of the P-BEST system, see
Appendix A.

For an example of the syntax of the P-BEST rules, refer to Figure 4.3,
which gives an example of the rule “makeiandommove” from the tic-tac-toe
rule base. This rule is given an explicit ranking, in this case -10, whit& affects
the selection of which rule to execute when there are multiple candidates.
The higher the rank of the rule, the greater priority given that rule during
conflict resolution. The effect of this rule is that when it is the computer’s
turn to move, if no rules with higher ranks are eligible to fire and if there is

30 Chapter 4. Examples

(define-ptype POSITION
'A unique pouition in the 3x3 board.'
row
col
marker

; integer - range 1 to 3.
; integer - range 1 to 3.
; free, corn or opp.

1

Figure 4.2: P-type Fact Template Declaration in P-BEST

a free position left on the board, the computer will select one of those free
positions and replace the "free" designation with its marker, 'corn".

The completed initial rule base consisted of 11 rules:

0 3 rules to detect a condition where the computer can win

0 3 rules to detect a position where the computer muat block

0 2 rules to recognize lost and tie games

0 2 rules to get and check human input

0 1 rule to make a random move as a default case

plus a handful of LISP functions that assisted in managing the display of the
game board. The complete code for the rule base is given in Appendix C.

4.2.3 Requirements

Although it is sometimes quite difficult to identify expectation for a system
whose capabilities will evolve through a developmental process, in order to
validate the system, either through testing or through formal analysis, it is
imperative that the requirements against which the system is to be evaluated
be made explicit.

Tic-tac-toe can be viewed as an optimization problem; given a board
position, the computer is expected to pick the beat move possible. Optimally,
we would like to have a system which wins; however, in this particular game
it is a well-known fact that a win cannot be guaranteed. A win occurs
only when the opponent makes a mistake; if no mistake is made by either
player, the game terminates in a draw. Therefore, a desired competency
requirement, which is also a liveness property for this system, might be:

4.2. Example-constraint Satisfaction 31

(defrule MAKE-RANDOMMOVE
“Select a paeudo-random porition to place marker.

Priorithe positions as: 1. center, 2. comem
and 3. middles.m

at rank -10 states
if there exists a turn called t l

such that player is com and

there exists a position called p l
count is ?x and

such that marker is free

forget t l and
remember a position

then forget p l and

which inherits from p l
except that marker is com and

remember a turn
such that player is opp and

count equals (1+ ?x))

Figure 4.3: Rule make-randommove From the Tic-Tac-Toe Rule Set.

0 The system wins, when possible.

This implicitly includes the notion of playing to the standards of a human
player; it implies that a strategy is pursued that encourages the opponent
to make an error, and recognizes such situations in order to capitalize on
mistakes and force a win. Such a notion would be very difficult to capture
formally or to check with formal analysis. Even in the game of tic-tac-toe,
which has limited number of possible system states, an optimal move in
an arbitrary configuration would be difficult to recognize; in some sense it
would involve recognizing the strategy of the opponent which may not be
deducible from the board configuration alone.

A minimum competency requirement, which is also a safety requirement
for this system, is somewhat more tractable; above all:

0 The system shouldn’t lose.

We have already noted that it is impossible for an opponent to force a win;
therefore, the minimum competency we required of our system was that it
never make a mistake that would result in the opponent’s winning.

32 Chapter 4. Examples

To formalize this minimum competency requirement, we introduced the
notion of a safe state. We defined a safe state, which is expressed in terms
of board configurations, to be those configurations in which the computer
has won the game, or in which the opponent cannot win the game with the
placement of the opponent’s next marker. In the language of EHDM, this is
expressed as:

safedef: Axiom
safe(kbx, an)

won_game(kbx, sn)
v -dosenextmove(kbx, sn)

Under our initial formulation of rules, there was no reason to believe the
expert system should be able to win a game of tic-tac-toe because it does
not attempt to pursue a winning strategy (the computer simply selects a
pseuderandom move when it cannot immediately win and need not block).
However, it was reasonable, to hope that the computer would not lose un-
der this strategy. Specifically, three rules were included in the rule base,
blkrow, blkxol, and blk-dia, that prevent the opponent from placing a
marker in any row, column or diagonal which would result in a lost game.

4.2.4 Formal Specification

We constructed a formal specification of the tic-tac-toe rule base and pro-
posed to verify that specification against the minimum competency require-
ment that the system must not lose the game. The specifications for the
tic-tac-toe rule base are contained in Appendix D. In order to create a
formal specification for this application, it was necessary first to define an
approximate semantics for the language of our expert system shell, P-BEST.

We expressed the nonmonotonicity of the rules by introducing an explicit
notion of system state. As explained in Section 3.3, one way to accomplish
this in the EHDM language is to add to value-returning functions an extra
parameter that corresponds to a specific system state. For example, one of
the modules in the specification describes a formal object called a kb, which
is declared to be a set of facts (see module kbs in Appendix D). A function,
kblnst, of two parameters is provided to access the value of objects of this
type; one parameter is the knowledge base for which to return the value;
the other is the current system state. Therefore, the declaration for this
function in the language of EHDM is:

4.2. Example-Constraint Satisfaction

kb-inst: functiona[kb, state + set[fact]]

33

With this formulation, we can express that facts that are associated with a
given knowledge base in a given state may possibly not be associated with
that knowledge base (i.e., may have been retracted) in some later state,
without the danger of such retractions leading to logical contradictions.

Each fact template, or ptype, declaration in the rule base becomes a type
declaration in the formal specification. For instance, the type position is
declared to be a subtype of type fact. This allows the declaration and
use of logical variables that range over all possible positions. Along with
the type declaration, a function is defined that tests for membership of a
certain class of instances of a fact in a knowledge base at a particular state.
With these declarations, a relatively straightforward translation of the rules
into a logical notation can occur. This can be seen by comparing any of
the rules in Appendix C with their corresponding formal specifications in
Appendix D.

The proof strategy for establishing that the system conforms to the spec-
ification of our safety property involves simple induction over all valid se-
quences of moves. In such a scheme, the initial state of the system, in which
no markers have been placed on the board, is shown to conform to the prop
erty in question. In this case, the proof of the safety of the initial state
is trivial; since there are no markers on the board, there is no way for the
opponent to win on the next move. Then, given an arbitrary “reachable”
state that preserves the safety property, if one can establish that all reach-
able next states also preserve the property, by appealing to induction one
has established that the property is maintained over all valid sequences of
moves.

Figure 4.4: Example Configuration

In attempting to construct the proof, it soon became apparent that it
waa impossible to prove the safety property without considering the implicit
control flow in the rule base and the sensitivity of the operational semantics
to the ordering of assertions. In the tic-tac-toe rule base, for example, the

34 Chapter 4. Examples

rules dealing with blocking the opponent have prekedence over the rule for
placing the computer’s marker at random. In a situation such as that shown
in Figure 4.4, where the opponent’s markers are represented as “0” and the
computer’s markers are represented by “X”, it cannot be proved that the
computer will not lose on the next move (one of the criteria for the safety
property in question) if the computer places its marker in any position other
than row 2, column 1. This is a direct reflection of the fact that it is unsafe to
execute any rule in the above situation except the rule that explicitly deals
with blocking an opponent’s win on any particular column; however, if the
rules are treated as being nondeterministically selected for execution, this
crucial piece of knowledge is missing and it is impossible to reason formally
about the safety of the system.

The informal operational semantics of the tic-tac-toe rule base include a
ranking of rules. This ranking will prevent the make-randommove rule from
firing when one of the blocking rules is also a candidate. Since exactly one
rule fires per state transition, it is operationally impossible for the wrong
rule to fire. We needed to find a formalism that could capture this implicit
proceduralism of the rule base.

Making use of the concept of guarded commands as put forward by
Dijkstra [20], we adopted a formulation that approximates the proceduralism
of this application. To do this, we defined a set of operations, one for
each of the rules, such that the precondition of each operation consisted
of the conjunction of the negation of the preconditions of all operations of
higher precedence with the precondition of the corresponding rule. This is
illustrated in the module guarded-ops in Appendix D. This is only an
approximation of the actual operational proceduralism because it results in
a strict ordering of the rules; the actual rule base is only ordered with respect
to groups of rules at differing precedence levels-rules within each group are
nondetenninietically selected. However, this strict ordering is suflicient to
establish the safety property in question.

The operational semantics of the rule base is also sensitive to the or-
der in which facts are asserted into the knowledge base. For example, the
make-randommove rule (Figure 4.3) selects a free space to place a marker.
Contrary to what the name of the rule suggests, the choice of free space is
not random, but totally deterministic. AB the documentation of the rule
suggests, the center is always chosen if it is free, followed by the comers (be-
ginning with the upper-right-hand corner and proceeding clockwise), and
finally by the middles. This precedence occurs because the conflict resolu-
tion strategy of P-BEST gives priority to rule instances which reference the

4.2. ExampbConstra int Satisfaction 35

most recently-asserted facts. In order to capture this operational dependence
upon the ordering of the initial assertions, additional axioms were introduced
to make this ordering available during formal reasoning (see module ttt-rlsl
in Appendix D).

The proof attempt uncovered four configurations of the board which
could result in the computer being forced into a no-win situation; these con-
figurations occur when the opponent can win in two possible ways, making
it impossible for the computer to block the opponent in a single move. One
such configuration is illustrated in Figure 4.5. We were able to prove that the

01 I x

Figure 4.5: No-Win Sample Configuration

strategy of the tic-tac-toe rule base prevented the opponent from reaching
two of these states. However, the formal analysis showed that the remaining
two configurations could be reached and could cause a loss. Because of the
existence of these situations, it was impossible to prove the safety invariant
for the blocking rules as they were originally formulated. In other words,
our original rule base was incorrect; it failed to consider situations which
were both reachable and contradictory to our safety requirement.

With this insight, we were able to expand the definitions of our safety
requirement to be:

safedef: Horn
safe(kbx, an)

wongame(kbx, an)
V -(losenextmove(kbx, an)

V unsafexonfig-l(kbx, an)
V unsafe_config2(kbx, an)

~unsafe_config8(kbx, ~ ~) V ~ n ~ a f e - ~ 0 n f i g - 4 (k b ~ , sn))

To correct the rule base, two additional blocking rules were added at a higher
priority with respect to the other blocking rules; these rules specifically

36 Chapter 4. Examph?~

countered the two remaining unsafe situations. With the addition of these
two rules, the inclusion of their logical equivalents in the formal specification,
and the expanded safety definition, it was possible for the proofs to be carried
forward. Samples of proofs in the methodology of EHDM are included at
the back of Appendix D. We did not attempt to complete all proofs; it was
not necessary to formally complete all the proofs, nor to prove the induction
hypothesis, in order to derive the benefits of the formal analysis.

4.2.5 Observations

From this experiment, we are able to draw the following conclusions.
The translation of expert system rules into logic requires a formulation

that captures the state-dependent nature of the inference engine. An approx-
imate semantics for rule-based systems can be formulated which provides an
adequate framework for reasoning formally about some of the behavior of
the system.

While it may be possible to establish very weak invariants independent
of the conflict resolution strategies involved in the expert system, and inde-
pendent of the inherent proceduralism involved, it would be impossible to
establish many important safety properties, such as the one defined for this
example system, without capturing the implicit control flow.

Reasoning formally about this application uncovered critical situations
that were originally overlooked. While the rule base was not incomplete
or inconsistent according to syntactic analysis, the original rule base was
incorrect, because it was conceptually incomplete for a class of situations
that could have led to violation of the safety property during operation.
Such conceptud incompleteness would not have been discovered through
any form of syntactic analysis of the rule base.

4.3 Example-Model Inversion

In this section we consider the application of formal reasoning to the develop
ment and verification of model-inversion type expert systems. The example
presented here considers the problem of constructing an expert system to
diagnose problems in a car’s electrical system.

4.3. Example-Model Inversion 37

4.3.1 Problem Description
As in all diagnosis systems, the goal of our example program is to be able
to identify the most-likely cause of a problem given a set of observed effects.
To constrain the problem, we consider only a simplified subset of an actual
electrical system. Our subset consists of the following components:

0 battery cells

0 battery

0 ignition switch

0 points
0 coil

0 distributor

plugs
0 solenoid

0 starter

We limit the set of potential causes to be the set of failed components.
In other words, we would consider the failure of the ignition switch to be
a potential cause for the observation that power is failing to be delivered
to the points and starter solenoid, but we would not consider the state of
the wires connecting these components as potential sources of the problem.
Further, we consider only single points of failure in this exercise-for any
given set of observations, the expert system is required to find the single
most-probable cause which accounts for the observations.

4.3.2 The Formal Model
We created a formal model of our simplified automotive electrical system
in the language of EHDM; this model is contained in modules components
and enginemodel in Appendix H. The focal point of this model is the ax-
iom electricalsystemmodel shown in Figure 4.6. The accuracy of this
formalization is based on a number of assumptions (e.g., the fact that the
car in question is not running); however, the model is adequate for the illus-
trative purposes of this discussion. The model asserts that there is a causal
relationship between various components of the system. To have power at
the ignition switch, for example, the model states that it is necessary that
the battery be in a good state of repair and that the battery be delivering

38 Chapter 4. Examples

electricabyatemmodel: Axiom
(power-at(battery) # good(cells))

A (power-at(ignition) * powerat(battery) A good(battery))
A (power-at(pobts) ++ power-at(ignition) A good(ignition))
A (power-at(coil) ++ power-at(pobta) A good(points))
A (power-at(distributor) power-at(coil) A good(coil))
A (power-at(p1ugs) power,at(distributor) A good(distributor))
A (power-at(so1enoid) power-at(ignition) A good(ignition))
A (power-at(starter) * power-at(so1enoid) A good(eo1enoid))

Figure 4.6: Model of Simplified Automotive Electrical System

power. This is representative of the fact that the battery is “upstream”
from the ignition in our simple model, just as the ignition is upstream from
both the points and the starter solenoid.

4.3.3 Rule-Based Implement at ion

For this experiment, we developed a small backward-chaining rule inter-
preter, which & a variation on Winston’s expert problem solver [56]. Backward-
chaining systems start with an unconfirmed hypothesis and attempt to con-
firm it. This involves identifying rules that subetantiate the hypothesis, and
then attempting to verify the conditions upon which the applicable rules are
dependent. Apart from some syntactic sugar in the form of extensions to
simplify the expression of rules and hypothesis, there are two major differ-
ences between Winston’s original system and our enhanced version:

1. Our system allows the appearance of “not” clauses in the LHS of rules

2. Our system allows the specification of questions to be used to obtain
observations from the user, rather than attempting to synthesize such
questions from the symbolic representation of the facts

We created two separate implementations of this rule base. One imple-
mentation was distilled from a set of troubleshooting and diagnosis proce-
dures contained in Chilton’s Import Car Repair Manual [54]. We would
expect the quality of this rule base to approximate the results of most stan-
dard knowledge engineering efforts. A subset of the rule base is given in A p
pendix F. The other implementation was derived from the abstract model

4.3. Example-Model Inversion 39

of our simplified system through a relatively mechanical process. This rule
base is given in Appendix G.

The procedure for generating the rule base from the axiomatic specifi-
cation of the model, as seen in Figure 4.6, was straightforward. For each
equivalence relation specified by the model, a rule is generated to capture
the equivalence. For example, the relation

(power-at(starter) e, powerat(so1enoid) h good(so1enoid))

caused the following rule to be included in the rule base:

(def he-rule d7
(i f (power a t solenoid)

(good solenoid))
(then (power a t s tarter) 1)

Then, rules were provided which define the possible observations and pro-
vide questions that may be asked of the user to acquire information about
the observations. Finally, a set of rules were added which identified the
global dependencies in the system; these rules serve to associate the failure
hypothesis with the observations about system behavior.

4.3.4 Requirements and Validation

As suggested in Section 2.2.2, requirements for expert systems which have
formal models can be expressed as

Vc E C, e E E : P (e , c) 3 M(c, e)

where C is the set of all causes, and E is the set of effects. This leads to
a procedure for validating the operation of the expert system against the
expectations of the model for any given set of causes and effects.

Our simplified model identifies eight possible causes for the system to
fail; these eight causes correspond to the failure of one of the eight system
components. The effects in our model are limited to an observation of where
power is available and where it is not. There is an assumption that the failure
of a particular component causes the flow of power through that component
to cease, making the power unavailable to all components down-stream from
the failing component, and that the presence or absence of such power is
observable. What we were interested in showing was, that given a certain

40 Chapter 4. Examples

set of observations presented to the expert system, an answer would be
produced which, when presented to the model, would cause the correct set
of effects to be predicted.

To allow the model to be used to make such predictions, we defined two
additional EHDM modules, test and predict (see Appendix H), which we
used to predict the values of the observable effects. To establish which effects
should be observable according to the model, we set the constant comp in
module predict to the value of the failed component. We then attempted to
prove eight lemmas, each of which assert that power will be visible flowing
through a particular system component. The proofs of these lemmas are
derivable from the characteristics of the model, the value of comp, and the
assumption that there is a single point of failure. Those lemmas for which
the proof succeeds correspond to the set of predicted effects.

Consider the example of a failed ignition switch. To select the set of
components through which the model predicts power will flow, we set

comp = ignition

and invoke the EHDM provemodule command. The results of this command
is shown in Figure 4.7. In this case, the model predicted that there would

Proof summary f o r module predict

power-at-star
power-at-sole
power-at-plug
power-at-dist
power-at-coil
power-at -pain
power-at Agni
power-at-batt

UNPROVED
UNPROVED
UNPROVED
UNPROVED
UNPROVED
UNPROVED
PROVED
PROVED

Totals: 8 proofs, 8 attempted, 2 succeeded.

Figure 4.7: Result of EHDM ProveModule With comp=ignition

be observable power through the battery and the ignition. To validate the
expert system, we simply answer the questions which correspond to a faulty
ignition switch. A transcript of the results of the expert system run is

4.3. Example-Model Inversion 41

shown in Figure 4.8. As can be seen from comparing the transcript of the

Does your car fail to start? (Yes or No) yes

Does the starter fail to turn when the hey is
engaged? (Yes or No) yes

Are all of the voltage levels of the individual
battery cells normal? (Yes or No) yes

Rule <DIA>

Rule <Dl>
deduces: (GOOD CELLS)

deduces: (POWER AT BATTERY)

Are there any cracks or damage to the battery
cane? (Yes or No) no

Are the battery posts and cable clamps
corroded? (Yes or No) no

Rule < D U >

Rule <D2>
deduces : (GOOD BATTERY)

deduces: (POWER AT IGNITION)

Does a voltmeter connected to the starter poet
of the solenoid fail to Rove when the hey is
turned to the start position? (Yes or No) yes

Rule <Y6>
deduces : (BAD IGNITION)
Diagnosis : BAD IGNITION.

Figure 4.8: Example Transcript From Expert System

expert system session with the results of the formal proof, the model and
the expert system share an inverse relationship. The model was able to
accurately predict the set of observations consistent with a failed ignition
switch, and the expert system was able to correctly deduce that the ignition
switch had failed (while making intermediate deductions consistent with the
predictions of the model).

42 Chapter 4. Examples

It is interesting to note that the expert system may not actually observe
all of the predicted good components on its way to diagnosing a failure. For
instance, in the case of a failed solenoid, the model's predictions are shown
in Figure 4.9. The model predicts that there will be power throughout

Proof summary f o r module predict

power-at-star
power-at-sole
power-at-plug
power-at-dist
power-at-coil
power-at ,pain
power-at-igni
power-at-batt

UNPROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED
PROVED

Totals: 8 proofs, 8 attempted, 7 succeeded.

Figure 4.9: Result of EHDM ProveModule With comp=solenoid

all system components with the single exception of the starter. The expert
system, on the other hand, on its way to finding the correct answer, observed
only three of the predicted seven good components, as can been seen from
the transcript included in Figure 4.10. This is illustrative of the notion of
weaker consistency as explained in Section 2.2.2. In this case, the 7 in

Vc E C, e E E : P (e , c) 2 3 e' : M(c, e') A e' 2 e

corresponds to the relation that the observed effects do not contradict the
predicted effects and that the predicted effects are a superset of the observed
effects.

4.3.5 Observations
Based on this and other similar experiments, we make the following obser-
vations and conclusions.

Development of the initial rules based upon heuristics was a tedious and
arduous process which left us feeling very unsure about the quality and
completeness of the rule base for even so small an example as the one under
consideration here. Quite to the contrary, we found generation of diagnostic

4.3. Example-Model hversion 43

rules based upon an explicit representation of the model of system behavior
to be a relatively straightforward process. Further, because we were working
from an explicit model, we felt a much higher degree of confidence concern-
ing the quality of the ensuing rule base. It should be possible to develop
mechanical translators which are capable of doing much of the transforma-
tion from the logical notation used in expressing models to a rule-based
representation, thereby reducing development costs and further increasing
confidence that errors were not introduced during the transformation pro-
cess.

We believe that the notion of model inversion has great potential for
application to verification of diagnostic expert systems. While the ideas set
forward here are still in a formative stage, the success experienced to date has
left us feeling optimistic about the feasibility of developing verification and
validation techniques that are both effective and well-grounded in theory.

44 Chapter 4. Examples

Does your car fail to start? (Yes or No) yes

Does the starter fail to turn when the key is
engaged? (Yes or No) yes

Are all of the voltage levels of the individual
battery cells normal? (Yes or No) yes

Rule <DlA>

Rule <D1>
deduces: (GOOD CELLS)

deduces: (POWER AT BATTERY)

Are there any cracks or damage to the battery
case? (Yes or No) no

Are the battery posts and cable clamps corroded?
(Yea or No) no

Rule <D2A>

Rule <D2>
deduces: (GOOD BATTERY)

deduces: (POWER AT IGNITION)

Does a voltmeter connected to the starter post of
the solenoid fail to move when the key is turned
to the start position? (Yes or No) no

Does the needle of a voltmeter flicker when the key
is jiggled? (Yes or No) no

Rule <D3A>

Rule <DS>

Rule <D3>

deduces : (GOOD IGNITION)

deduces: (POWER AT POINTS)

deduces: (POWER AT SOLENOID)

Does the starter buzz or turn the engine slowly when
a jumper is connected between the battery and starter
posts of the Solenoid? (Yes or No) no

Does the starter show no response vhen a jumper is
connected between the battery and starter posts of
the solenoid? (Yes or No) yes

Rule <YQ>
deduces: (BAD SOLENOID)
Diagnosis: BAD SOLENOID.

Figure 4.10: Example Transcript From Expert System

Chapter 5

Conclusions and
Recommendations

Formal verification is not a technique to be used in isolation: it should be
a component of a comprehensive development methodology based on the
systematic application of formal methods. Due to the cost and difficulty
of applying such methodologies, they are usually reserved for very critical
applications, where assured reliability and safety are paramount, and where
simple and robust designs, conducive to formal analysis, may take prece-
dence over functionality. For formal verification to be tractable, and its
results credible, formal analysis must be part of the design process from the
beginning and must influence the design as it evolves.

These are not attributes of expert system development and knowledge
engineering as commonly practiced today. Consequently, formal verification
has only limited applicability, and possibly even less utility, in contemporary
expert systems development. This is emphatically not to say that formal
verification has no part to play in the development of high-quality expert
systems, but to point out that much more needs to be done besides develop
ment of the formal verification techniques themselves. It will be necessary
to revise much of the practice of expert systems engineering, and some of
its goals, in order to accommodate requirements for high reliability and
predictable behavior assured by formal analysis.

We do not expect-or even advocate-that the field of expert systems
should confess error and change its working practices and philosophical foun-
dations. Rather, we suggest the creation of a subdiscipline that will seek
to develop and apply, from expert systems engineering, the methods and

45

46 Chapter 5. Conclusions and Recommendations

insights that are applicable and beneficial to systems with exacting depend-
ability requirements. Formal methods and verification should be a signifi-
cant technical component of that subdiscipline-which should bear a similar
relationship to its parent field as the engineering of conventional computer
systems for lifecritical applications does to the general field of computer
and software engineering.

We believe this report makes three contributions to the development of
a foundation for the subdiscipline of dependable expert systems:

0 The identification of constraint satisfaction and model inversion as for-
mal specification paradigms for synthetic and analytic expert systems,
respectively.

0 A formal definition of consistency for rule-based expert systems.

0 Identification of the notion of approximate semantics, and examples
of how these can be achieved and applied in both declarative and
imperative forms.

Recommendations for Further Research

We suggest that research and development should continue on the following
three levels of increasing rigor and formality:

1. The development of formally based analysis and anomaly detection
tools-such as consistency checkers-that can provide useful, but not
definitive, help in the construction and quality assurance of conven-
tional expert systems.

2. The development of a methodology and tools for the creation of de-
pendable expert systems, based on formal specifications, run-time
checking, and fault-tolerance techniques. Constraint satisfaction and
model inversion can provide not only formal specifications for expert
systems, but executable tests for the satisfaction of those specifica-
tions. By testing the output of an expert system against its specifi-
cation at run time, and invoking fault-recovery and tolerance mecha-
nisms on failure (e.g., the execution of alternate subsystems or algo-
rithms as in the recovery block method for software fault tolerance),
it should be possible to develop highly dependable expert systems for
certain, perhaps limited, applications without requiring a complete

47

change in the development and implementation strategy for the ex-
pert systems themselves.

3. The development of a formally-based methodology and tools for ex-
pert systems. This will require development of a systematic design
methodology for expert systems in which knowledge engineering is
combined with the systematic, topdown elaboration of requirements
and specifications. It will also require development, for expert systems,
of programming languages that are amenable to formal analysis. One
slightly radical, but very promising, approach will be to abandon con-
ventionally hand-crafted, rule-based expert systems for certain critical
applications, and instead to develop those applications through explicit
constraint satisfaction and model inversion techniques. The latter may
involve either the exploration of an explicit model at run time, or the
“compilation” of that model into an efficient set of production rules.
Pearce [44] has demonstrated that this technique can be both more
efficient and more reliable than a hand-crafted rule set.

We suggest that exploration of the second and third approaches identi-
fied above should be conducted and evaluated through modest prototyping
experiments using potential applications of expert systems of interest to
NASA and Space Station planners. Fault diagnosis (analysis) and schedul-
ing (synthesis) seem to be the most promising applications, from both the
scientific and practical points of view.

48 Chapter 5. Conclusions and Recommendations

Appendix A

P-Best

The Production-Based Expert System Toolset (P- BEST) is a forward-chaining,
LISP-based expert system development environment (sometimes referred to
as a shell), which consists of a rule-development language, rule compiler,
run time routines, and a debugger. It provides an integrated set of facilities
for the creation and debugging of complex knowledge bases. Although de-
veloped primarily as a research vehicle in the exploration of expert systems,
its features and facilities have been heavily influenced by the suggestions,
critiques and demands of individuals involved in the applications of expert
systems to real-world problems. P-BEST is intended to be portable, yet
reasonably efficient in executing complex rules against large data sets.

A.l How P-BEST Works
The basic P-BEST strategy revolves around maintenance of an expert sys-
tem state. The system state is represented by the union of the states of the
fact base, the rule base, and any external data structures unique to a given
application. This union is referred to as the knowledge base (KB). Rules
(IF. . . THEN. . . pairs) are developed by the user and compiled by P-BEST
into the rule base. A very simple rule might say something like:

if is-a-man socrates ,
then

is-mortal socrates .

Once the rules are developed, the user may introduce facts (knowledge) into
the KB through assertions. For example, a user might wish to assert that

49

50 Appendix A. P - BEST

is-a-man socrates

The P-BEST inference engine is a distributed mechanism for matching
facts to rule antecedent patterns, performing binding analysis, and invoking
rule consequents. It is distributed in the sense that for each rule in the rule
base, the compiler will produce a number of primitive LISP functions that
implement the semantics of the rule. As facts are asserted, each rule in
the rule base that references the type of knowledge being asserted examines
the fact for a potential match. When a pattern in the antecedent of a rule
matches the fact being asserted, a binding is created and associated with
both the fact and the rule. If such a binding is created, and if, as a result
of this binding, all the patterns of a rule have been matched, then binding
analysis is performed to determine if all of the variable values referenced by
the rule/fact bindings are consistent.

Given the example rule stated above, if the fact were asserted

is-a-man socrates

then the rule would determine that its antecedent had been satisfied. Be-
cause the sample does not specify any additional constraints, the rule would
pass consistency analysis and conclude that

is-mortal socrates

Of course, if the rule stated something like

if is-a-man socrates and
i s -a l ive socrates

then
is-mortal socrates

then asserting that is-a-man socrates would not be sufficient to complete
the conditions of the rule.

Most expert systems will consist of a large number of rules and require
the assertion of a substantial number of facts to reach meaningful conclu-
sions. Under P-BEST, when a fact is asserted and matched against all
candidate rules, the resulting set of rules flagged as complete (all patterns
in the antecedent are bound to some fact) are examined to determine if the
there is a valid binding combination. This second level of analysis which
deals with value constraints is called binding anafysi8. In general, vari-
able values are examined and any additional test constraints are evaluated

A.1. How P-BEST Works 51

to determine if there is a consistent interpretation of the binding set that
would allow a rule to reach its conclusion (or fire). The rules with rule/fact
bindings that meet binding analysis are gathered into a conflict set, and
the “best” rule in this set is selected and fired. The process of selecting a
rule to fire from a number of possibilities is called conflict resolution. The
consequent of the selected rule will fire and generally alter the state of the
knowledge base, which will cause the creation of other rule/fact bindings.
The process then repeats until no further candidates for firing remain. It
is up to the individual application to assign an interpretation to this state:
in some applications, exhausting all possible inferences might be considered
the natural culmination of processing, while in other applications, reaching
such a state might be considered an error.

A.l . l Facts

Facts in the P-BEST system may be thought of as predicates asserted into
the fact base. At the lowest level, they are LISP structures whose format
is described by a user-provided definition statement. A fact’s type is called
its ptype (or puttern-type), and thus the function for defining fact types is
called “define-ptype.” A sample ptype definition might be:

(def ine-ptype is-mortal person) .
This ptype, is-mortal, allows the assertion of facts into the system whose
person field could contain something like socrates, or reagan or 6. It
is necessary to note the difference between syntactic constraint, which the
system enforces, and semantic constraint, which is the responsibility of the
knowledge engineer. In the above example, is-mortal is a syntactic struc-
ture that takes a single argument: this is the extent of the restrictions
enforced by the system. Semantically, the intent of this predicate is that
the value occupying the person field is a mortal. Asserting, for instance,
that (is-mortal a i r) or (is-mortal 6) is syntactically correct, but is of
dubious semantic worth.

Although facts are generally asserted into the knowledge base by rules, a
user can directly alter the state of the knowledge base. The act of asserting a
fact is handled by the function pbest-assert. The function pbest-assert
allows the assertion of a single fact into the Fact Base. A fact assertion
might look like this:

(pbest-assert ’(is-mortal socrates))

52 Appendix A. P-BEST

FB : [fl]
1

(&PZl)
1

(&PZ2)
1

nil

C
t

U
[%I =+

=+ [fnl
1

nil

nil
t

IRZI
U

Figure A.l: Knowledge Base

This would result in the assertion of a fact (or predicate) of type is-mortal,
whose attribute is socrates. The fact would be added to the global knowl-
edge base, and appropriate rules would examine the fact in an attempt to
bind to it.

A.1.2 Rule/Fact Bindings

What does it mean for rules and facts to be bound? When a fact is asserted
into the fact base, all rules pertaining to that fact (Le., which reference
facts of a particular ptype) create links to it. These links are referred to as
bindinge. Consider the symbolic examples of Figure A.l, which represents
the state of the system after three rules (&, Ry, R,) have been added to the
rule base, and three or more facts (fl, E, f3,. . .fn) have been asserted to the
fact base.

In this example, (where R=rule, P=pattern, and B=binding) rules &
and 4 are candidates for binding analysis to determine if some combination
of the current bindings constitutes a consistent binding context @e., all
repeated variables have the same value, and all variable tests and restrictions

A.2. P-BEST Components 53

are satisfied). You will notice that R. is not a candidate for binding analysis
because R.P.2 is not bound to any fact. Therefore, the COMPLETE flag
(represented by the vertical “C”) is not set. R,, on the other hand, will be
considered in binding analysis because 1R,,Pi,21 which is a not-pattern, has
no bindings; all other patterns in R, have bindmgs.

What does it mean for a binding context to be consistent? Briefly, P-
BEST checks each possible combination of the rule patterns and all matching
facts until it finds a set of facts that are consistent. So, if a rule has two
patterns, the first pattern having four facts that match it, and the second
pattern having five facts that match it, then P-BEST may have to consider
all possible pairs’. In this case, there are potentially 20 different comparisons
to establish a consistent set of facts.

A.2 P-BEST Components

P-BEST consists of a production-rule language, a compiler, and a window
debugger. These facilities are combined into an integrated environment for
the creation and maintenance of knowledgebased systems.

A.2.1 The Language

The heart of any expert system shell is its facility for capturing knowledge.
The P-BEST language is very expressive, allowing the knowledge engineer
to capture complex relationships in a concise form, yet the syntax is con-
strained English, thereby greatly increasing the readability (and therefore,
the maintainability) of P-BEST rules over other representations.

A.2.2 The Compiler

The implementation of P-BEST optimizes execution speed and avoids the
use of an extensive run-time support package in favor of direct translation of
the production rules into complete, independently compiled functions. Var-
ious run-time control logic and auxiliary functions are provided to support
the execution of the rules, but the real heart of a P-BEST-based expert
system is the generated functions that represent the rules themselves.

It is perhaps misleading to say that P-BEST contains a compiler; it
does not. P-BEST contains a translator that converts the rules from its

‘P-BEsT’s optimized search strategy allows it to terminate its search upon finding the
first consistent binding context

54 Appendix A. P - BEST

own representation language to CommonLisp functions. P-BEST then de-
pends upon the operation of the target system’s CommonLisp compiler to
complete the process of generating object code. This is all transparent to
the knowledge engineer, however.

Each production rule is translated into three main functions that im-
plement the semantic intent of the rule: a function for examining newly
asserted facts and creating proper rule/fact bindings; a function for analyz-
ing binding relationships and determining consistency; and a function that
implements the results, or consequent, of the rule.

A.2.3 The Debugger

The expert system development environment presented by P-BEST is greatly
enhanced by the addition of a windowing debugger. Although this debugger
is not intended to be used as part of a completed expert system, it is very
useful during the creation and debugging of the rule base.

The debugger provides multiple simultaneous views into the state of
the knowledge base. In one window, the set of currently asserted facts is
displayed along with binding information. In another window, the rules
are displayed. The user is provided with numerous operations, such as
commands to step through the execution of the rule base, commands to
alter system state through assertion or negation of facts, and commands to
activate tracing features.

Appendix B

Ehdrn

The EHDM verification system was constructed at SRI International under
the direction of Friedrich von Henke(1, 2, 3, 551. The following sections
provide a brief overview of some of the features of the EHDM methodology.

B.l The EHDM Specification Language and Logic

This section provides a brief overview of the specification language of EHDM
and the underlying logic.

The specification language is based on first-order typed predicate calcu-
lus, but also includes elements of richer logics, such as higher-order logic [49],
lambd&calculus [7] and Hoare logic [29], for greater expressiveness. For ex-
ample, higher-order terms are particularly useful for expressing induction
schemas and requirements.

The specification language is strongly-typed; all entities must be declared
with their type before use. The type system includes subtypes and function
types. Specifications are written as definitions and formulas (axioms, theo-
rems, and lemmas). In addition to the standard expressions, the language
provides the Boolean connectives, polymorphic conditionals, and quantified
expressions, including quantification over functions .

A sublanguage is included for modeling operational behavior and imper-
ative programs, based on the notions of state object and operation. State
objects correspond to “program variables” in programming languages. Op
erations express state transformations; they have an effect on state objects
by possibly changing their values.

55

56 Appendix B. EHDM

The sublanguage also includes constructs for composing operation ex-
pressions; these correspond to the common control structures of program-
ming languages. The combination of all these features forms a sublanguage
that is essentially equivalent to a simple subset of the Ada programming lan-
guage. The semantics of operations are defined by Hoare formulas, which
express properties of the states before and after the state transformation
denoted by the operation.

Specifications are organized around the concept of parameterized mod-
ules. Modules are closed scopes with explicit importation and exportation of
names; modules can be nested. Names are made unique by qualifying them
with the name of their module of origin. Modules may be parameterized
by types, constants, and functions. Semantic assumptions or constraints on
module parameters can be expressed; these entail an obligation that must
be justified for each module instantiation. This form of module parameter-
ization is very general and powerful; it supports generic specifications and
allows many complex constructs to be built from simple language primitives.
Modules are the basic building blocks of specifications. A module may r e p
resent the theory describing a specification concept, an abstract data type,
an abstract state machine, or an (abstract) program.

An important aspect of the EHDM language (and the EHDM approach
in general) is the support of hierarchical development of specifications and
proofs. The language supports hierarchical structuring of specifications,
both with respect to composition of modules (Uhorizontal hierarchy”) and
levels of abstractions and refinements (“vertical hierarchy”). Vertical links
between modules at adjoining abstraction levels are established by map-
pings, which generalize the notion of implementation.

The language has been designed so that it naturally supports a high de-
gree of reusability of specifications and proofs. Reusability is also enhanced
by the library facility described later.

B.2 The Theorem Prover of EHDM

The theorem-prover component of EHDM combines powerful heuristics for
mechanically generating proofs in first-order predicate logic with efficient
decision procedures for the following standard theories:

0 Ground formulas in propositional calculus

0 Equality over uninterpreted function symbols [50]

B.3. The EHDM Environment 57

0 Presburger arithmetic, that is, linear arithmetic with the usual order-
ing relations [51]

Quational reasoning similar to the use of rewrite rules is specially supported
by the mechanized proof procedure. The prover also implements the main
reduction rules of lambda calculus and a fragment of higher-order logic;
however, the exact extent of this support is currently unclear.

The system supports both automated proof generation and interactive
proof construction that depends on user guidance. Proofs (more precisely,
proof steps) are declared in the proof part of a specification module; they
are expressed as a conclusion to be proven and a list of formulas (axioms
and lemmas) from which the conclusion can be deduced. The automated
prover completes a proof by attempting to construct suitable instances of
the formulas involved; the user can help in this process by providing some
substitutions for free variables, either directly in the proof declaration or
during proof construction. Completed proofs can be captured in augmented
proof declarations and included in the specification text for later %eplay.”
A proof-chain analysis tool checks for completeness of larger proof trees and
helps keep track of dependencies.

A special procedure for reasoning about state transformations has built-
in knowledge of the meaning of Hoare formulas and the constructs for ex-
pressing state objects and state transformations. This procedure provides
the main support for code-level verification. It permits users to reason di-
rectly with Hoare formulas, without the traditional intermediate step of
translating annotated programs into verification conditions (VCs); the pro-
cedure also supports reasoning about program fragments, as opposed to com-
plete programs units (like subprograms). In these respects, the paradigm
that is implemented by the procedure is more general than the traditional
‘verification condition generator” (VCG) paradigm. However, the equiva-
lent of a VCG is available in the EHDM environment as a proof development
tool.

B.3 The EHDM Environment

The EHDM environment is implemented as an integrated, interactive system
that supports all activities involved in creating, analyzing, modifying, man-
aging, and documenting specification modules and proofs. The standard
user interface of EHDM uses the bit-map display and combines a display-
oriented text editor (customized and enhanced EMACS) with multiple win-

58 Appendix B. EHDM

dows, menus, and mouse input. (A less enhanced editor-based interface is
available for remote operation.) All operations can be invoked directly from
the editor, including the basic operations of parsing, prettyprinting, and
typechecking specification text, invoking the theorem prover, and requesting
status information. In addition to the basic operations just mentioned, the
system provides a number of further support tools, including: the Context
and Library tools, the configuration control support, and the MLS Checker
and the EHDM-to-Ada translator (described in [3]).

B.3.1

The system maintains an internal data base for keeping track of the state
of individual modules and proofs (referred to as the working contezt), and
of the interdependences among modules and libraries; the user can manip-
ulate this working context or switch between contexts. Modules are the
basic entities around which the EHDM system is organized, and the con-
text feature virtually insulates the user from the underlying file system; the
EHDM system creates and manages ‘internal’ files, which the user can ignore
completely because all file manipulation happens as a side effect of the user
interaction with the EHDM system.

The library mechanism permits users to group together standard mod-
ules in libraries of reusable concepts, theorems, and proofs. The environ-
ment offers tools for creating and maintaining module libraries and supports
sharing of libraries among users and projects.

Contexts and libraries have been designed so that the novice user can
completely ignore these facilities. A user always works within a context, but
when a user starts EHDM for the first time, the system automatically estab-
lishes a working context; later, when the user leaves EHDM the system saves
the context and restores it when work is resumed. Users need to know about
contexts only when they want to work in more than one context; similarly,
they can ignore libraries until they want to make use of that facility.

The Context and Library Manager

B.3.2 The Configuration Control Tool

A configuration and version control mechanism ensures that consistent ver-
sions of modules are used, and status checks report on the status of modules
and proofs, and on dependencies among modules and proofs. At any given
time, a module specification may be in one of several states. When a mod-
ule is typechecked and also when a proof is performed, a “version check” is

.

B.3. The EHDM Environment 59

made to see that the typecheck information recorded for the transitive clo-
sure of all referenced modules is still valid. For example, if module A uses
module B, then changes to module B will invalidate the typecheck infor-
mation recorded for module A. This will be discovered when the typecheck
information for module A is used during the typechecking of a module that
uses A, or during the construction of a proof from A or a module that uses
A.

Appendix C

Tic-Tac-Toe Rule base

;; Each position in the 3x3 board is represented in working
;; memory by a “position” assertion of the following form:

(define-ptype position row col marker)

;; where rou,col are integers in the range 1-3 and marker is an
;; element of the set free, opp, com. ..
D S ..
I .

; ; A fact is asserted to keep track of whose turn it is ..
* I

(define-ptype turn player count)

;; where player is an element of the set opp, com, and count is
; ; of type nat. . .
O D

;; The initial state consists of 9 position assertions and 1 turn
;; assertion.

..
D D

;; A fact is asserted as the result of a player move, prior to
;; altering the board position. so that it may be checked.

61

62 Appendix C. Tic-Tac-Toe Rule base

(def ine-ptype oppmove row col)

..
B O ..
I ..
* B ..
B I ..
O B ..

where row and column are integers i n the range of 1-3 which
must correspond t o a f r e e posi t ion on the board.

The following macros a re defined for convenience:

(defmacro cornerp (x y) ‘(and (oddp .x)(oddp By)))
(defmacro middlep (x y) ‘ (or (and (oddp ,x)(evenp ,y))

(defmacro centerp (x y) ‘(and (equal , x 2)(equal ,y 2)))
(and (evenp ,x)(oddp ,y>)))

..
1) . .
B I

(defrule blk-cc s t a t e s
i f there ex i s t s a t u rn ca l led ti

such that player is com and
count is 3 and

such t h a t row is ? r l and
co l is ?c l and
marker is opp and

there e x i s t s a posi t ion

there e x i s t s a posi t ion
such t h a t row is ?r2 and

co l is ?c2 and
marker is opp

with (and (not (equal ? r l ?r2))
(not (equal ?c l ?c2))
(cornerp ?rl ?c l)
(cornerp ?r2 ?c2)

there e x i s t s a posi t ion
such t h a t row is 2 and

co l is 2 and
marker is com and

63

there e x i s t s a posit ion called p l
such t h a t row is ?r3 and

co l is ?c3 and
marker is f ree

with (middlep ?r3 ?c3)
then forget tl and

forget p l and
remember a posit ion

which inher i t s from p i
except that marker is com and

remember a turn
such t h a t player is opp and

count is 4)

(defrule blk-cm s t a t e s
i f there e x i s t s a turn cal led ti

such t h a t player is com and
count is 3 and

such that row is ? r l and
col is ?cl and
marker is opp and

there e x i s t s a posit ion

there exists a position
such that row is ?r2 and

col is ?c2 and
marker is opp

with (and (not (equal ?rl ?r2))
(not (equal ?cl ?c2))
(cornerp ? r l ?cl)
(middlep ?r2 ?c2))

there e x i s t s a posit ion
such t h a t row is 2 and

co l is 2 and
marker is com and

there e x i s t s a posit ion cal led p i

64 Appendix C. Tic-%-Toe Rule birse

such t h a t row is ?r3 and
co l is ?c3 and
marker is f ree

with (and (and (oddp ?r3) ;; take corner which in te rsec ts
(oddp ?c3)) ;; both of opp’s markers

(or (and (equal ?r3 ?rl)

(and (equal ?r3 ?r2)
(equal ?c3 ?c2) 1

(equal ?c3 ? c i))))
then forget ti and

forget pl and
remember a posit ion

which inherits from p l
except t h a t marker is com and

remember a turn
such that player is opp and

count is 4)

(defrule win-col a t rank 1 s t a t e s
i f there e x i s t s a turn cal led tl

such that player i s com and

such that row is ?rl and
col is ?cl and
marker is com

there exists a posit ion

there e x i s t s a posit ion
such t h a t row is ?r2 and

col is ?c2 and
marker is com

(equal ?cl ?c2)) and
with (and (not (equal ? r l ?r2))

there exists a posit ion cal led pos
such tha t col is ?c3 and

marker is f r e e
with (equal ?c2 ?c3)

65

then
forget ti and
forget pos and
remember a posit ion

which inher i t s from pos
except t h a t marker is com)

(defrule winrow a t rank 1 s t a t e s
i f there ex is t s a turn called ti

such t h a t player is com and

such t h a t row is ? r l and
col is ?cl and
marker is com

there e x i s t s a posit ion

there e x i s t s a posit ion
such t h a t row is ?r2 and

col is ?c2 and
marker is com

(not (equal ?cl ?c2))) and
with (and (equal ? r l ?r2)

there e x i s t s a posit ion cal led pos
such that row is ?r3 and

marker is free
with (equal ?r2 ?r3)

forget pos and
forget ti and
remember a posit ion

then

which inher i t s from pos
except that marker is com)

66 Appendix C. Tic-Tac-Toe Rule base

(defrnle winAia a t rank 1 s t a t e s
i f there e x i s t s a turn cal led tl

such t h a t player is corn and

such t h a t row is ? r l and
co l is ?c l and
marker is corn

there e x i s t s a posit ion

there e x i s t s a posit ion
such t h a t row is ?r2 and

co l is ?c2 and
marker is corn

with (and (not (equal ? r l ?r2))
(not (equal ?c l ?c2))
(equal (ab8 (- ? r l ?r2))

(ab8 (- ?cl ?c2)))) and
there exists a posit ion cal led pos

such t h a t row is ?r3 and
col is ?c3 and
marker is f r e e

with (and (equal (abs (- ?rl ?r3))

(equal (abs (- ?r2 ?r3))
(abs (- ?cl ?c3)))

(abs (- ?c2 ?c3))))
then

forget pos and
forget tl and
remember a posit ion

which i n h e r i t s from pos
except t h a t marker is corn)

(defrule blk-col s t a t e s
i f there ex is t s a turn cal led tl

such t h a t player is corn and
count is ?x and

there e x i s t s a posit ion

67

such that row is ? r l and
col is ?cl and
marker is opp

there e x i s t s a position
such t h a t row is ?r2 and

col is ?c2 and
marker is opp

(equal ?cl ?c2)) and
with (and (not (equal ? r l ?r2))

there e x i s t s a position called pos
such tha t col is ?c3 and

marker is f r e e
with (equal ?c2 ?c3)

forget pos and
forget tl and
remember a position

then

which inher i t s from pos
except tha t marker is corn and

remember a turn
such that player is opp and

count equals (1+ ?XI)

(defrnle blkrow s t a t e s
i f there ex is t s a tarn cal led tl

such tha t player is corn and
count is ?x and

there ex is t s a position
such tha t row is ? r l and

col is ?cl and
marker is opp

there ex is t s a position
such t h a t row is ?r2 and

col is ?c2 and
marker is opp

68 Appendix C. Tic-Tac-Toe Rule base

with (and (equal ?rl ?r2)
(not (equal ?c l ?c2))) and

there exists a posit ion cal led pos
such that row is ?r3 and

marker is f r e e
with (equal ?r2 ?r3)

forget pos and
forget ti and
remember a posit ion

then

which inher i t s from pos
except t h a t marker is com and

remember a turn
such t h a t player is opp and

count equals (l+ ?XI>

(defrule blk-dia s t a t e s
if there e x i s t s a turn cal led ti

such t h a t player is com and
count is ?x and

there exists a posit ion
such t h a t row is ?rl and

col is ?c l and
marker is opp

there exists a posit ion
such t h a t row is ?r2 and

col is ?c2 and
marker is opp

with (and (not (equal ?rl ?r2))
(not (equal ?c l ?c2))
(equal (abs (- ? r l ?r2))

(abs (- ?cl ?c2)))) and
there e x i s t s a posit ion cal led pos

such that row is ?r3 and
col is ?c3 and

69

marker is f r e e
with (and (equal (abs (- ?rl ?r3))

(equal (abs (- ?r2 ?r3))
(abs (- ?cl ?c3)))

(abs (- ?c2 ?c3))))
then

forget pos and
forget tl and
remember a posit ion

which inher i t s from pos
except t h a t marker is com and

remember a turn
such that player is opp and

count equals (1+ ?XI)

(defrule see-wongame a t rank 2 s t a t e s
i f there e x i s t s a turn cal led tl and

such that row is ?rl and
col is ?cl and
marker is ?m

there e x i s t s a posit ion

with (not (equal ?m ' f ree)) and
there exists a position

such t h a t row is ?r2 and
co l is ?c2 and
marker is ?m

with (or (not (equal ?r2 ? r i l l
(not (equal ?c2 ?c l))) and

there e x i s t s a posit ion
such that row is ?r3 and

col is ?c3 and
marker is ?m and

with (and (or (not (equal ?r3 ?r2))

(or (not (equal ?r3 ? r l))
(not (equal ?c3 ?c2) 1)

70 Appendix C. Tic-Tu-Toe Rule base

(not (equal ?c3 ?c l)))> and
t e s t (or (and (equal ? r l ?r2)

(and (equal ?c l ?c2)

(and (equal (ab8 (- ?rl ?r3))

(equal (abs (- ?r2 ?r3))

(not (or (equal ? r l ?r2)

(equal ?rl ?r3))

(equal ?cl ?c3))

(abs (- ?c l ?c3)))

(abs (- ?c2 ?c3)))

(equal ?c l ?c2) 1) 1)
then forget ti and

execute (draw-board) and
execute (format t "'%Player -A Won The Game! ! !'%" ?m))

(defrule see-tiegame a t rank 2 s t a t e s
i f there e x i s t s a turn ca l led ti

such t h a t player is ?p and
there does not e x i s t a posi t ion

such t h a t marker is f r e e
then forget tl and

execute (format t "%Tie Game! ! !'%"))

(defrule makerandomaove a t rank -10 s t a t e s

such t h a t player is com and

there e x i s t s a posi t ion ca l led p l

i f there e x i s t s a turn ca l led tl

count is ?x and

such that marker is f r ee
then forget p i and

forget ti and

71

remember a posit ion
which inher i t s from p i

except t h a t marker is com and
remember a turn

such t h a t player is opp and
count equals (I+ ?XI)

(def ru le getappaove s t a t e s
i f there e x i s t s a turn

such that player is opp and
there e x i s t s a posit ion

such t h a t marker is f r e e and
there does not e x i s t an oppaove

then execute (draw-board) and
remember an oppaove

such that row equals (get-ans 'row) and
such tha t col equals (get-ans 'col))

(def ru le do-oppaove s ta tes
i f there e x i s t s a turn cal led tl

such t h a t player is opp and

there e x i s t s an oppiove cal led m i
count is ?x and

such tha t row is ?rl and
col is ?cl and

such that row is ?rl and
col is ?cl and
marker is f r e e

there e x i s t s a posit ion cal led p l

then forget ti and
forget m l and

72 Appendix C. Tic-Tac-Toe Rule base

forget p i and
remember a posit ion

which inher i t s from p l
except t h a t marker is opp and

remember a turn
such t h a t player is com and

count equals (1+ ?XI)

(def ru le bad-opp-move s t a t e s
i f there e x i s t s a turn

such that player is opp and
there e x i s t s an opp-move cal led ml

such t h a t row is ?rl and
col is ?cl and

such t h a t row is ?rl and
col is ?cl and
marker is ?m with (not (equal ?m ' f ree))

there e x i s t s a posit ion

then forget m l and
execute (format t "'%That posit ion is already taken! ' X 1 I))

(defun i n i t - t t t (1
(Prow

(pest -reset)
(pest-assert ' (posit ion 3 2 f ree))
(pest-assert ' (posit ion 2 3 f ree))
(pest -asser t ' (posit ion 2 1 f reel)
(pest-assert I (position 1 2 f r e e))
(pest-assert ' (position 3 3 f ree))
(pest-assert I (position 3 1 free))
(pest-assert ' (posit ion 1 3 f ree))

73

(pest-assert '(position 1 1 free))
(pest-assert ' (position 2 2 free) 1
(pest-assert ' (turn opp 0)) 1)

(defun get-ans (label)
(do ((x 0))

((and
(format t "'%Enter 'A (1-3): 'I label)
(setf x (read))))

(> x O) (< x 4)) x)

(defun draw-board ()
(format t n'%r

c: 1 : 2 : 3 '%"I
(do ((r l)(c 1 (1+ c)))

((and (= r 3)(> c 3)))
(if (> c 3)

(prop (setf c 1)
(incf r)
(format t " ' X ---+---+--- ' X ")))

(if (3 c 1) (format t 'A :n r))
(format t " 'A
(if (< c 3) (format t 1 1 1 ") >))

(print-marker r c))

(defun print-marker (row col)
(dolist (f *facts*)

(if (and (position-p (f act-body (eval f)
(equal (position-row (fact-body (eval f)) row)

74 Appendix C. Tic-Tac-Toe Rule base

(equal (position-col (fact-body (eval f))) col))
(if (equal (position-marker (f act-body (eval f 1)) 'opp)

(return ' 0)
(if (equal (position-marker (fact-body (eval f)) I 'corn)

(return 'XI
(return #\Space))))))

Appendix D

Tic-Tac-Toe Specifications

75

76 Appendix D. Tic- Tac- Toe Specifications

arrays: Module [dtype: TYPE, undef-r: dtype]

Exporting array, newarray, assign, *1[*1], length, dtype

Theory
array: TYPE
i , j: VAR nat
d VARdtype
a: VAR array
newarray: array
assign: function[array, nat, dtype -+ array]
*1[*1]: function[array, nat + dtype]
length: function[array -+ nat]

acessnew: Axiom newarray[;] = undefi.

selectassign: Axiom a := i [j] = if i = j then d else a[j] end if

undax: Axiom (i 5 0 V i > length(a)) 2 a[;] = undef-r

End arrays

77

data: Module
Exporting datum, undef, wild

Theory
datum: TYPE IS int
undef, wild: datum

daxl: Axiom undef # wild

End data

78 Appendix D. Tic-Tac-Toe Specifications

diffs: Module
Exporting I * - * I , oddp, evenp

Theory
n,m: VAR nat
I * - * I: function(nat, nat + nat]
oddp: function[int + bool]
evenp: function[int + bool]

diffax: Axiom I n - rn I= if n > rn then n-rn else m - n end if
oddp-ax: Axiom

oddp(n) = if n = 1
then true

ELSIFn > 1 then oddp(n - 2) else false
end if

evenp-ax: M o m
evenp(n)= if n=O

then true
ELSIF'n > 1 then evenp(n - 2) else false
end if

natdef-ax: Axiom n 2 0

Proof
difflemma: Lemma I n - m 12 0

dlp: Prove difflemma from
diffax {n t nQcs, m t mQcs},
natdefax {n t nQCS},
natdef-ax {n t mQcs}

End diffs

79

facts: Module
Using data, arrays[datum, undef]

Exporting fact with data, arraya[datum, undef]

Theory
fact: TYPE from array

End facts

80 Appendix D. Tic-Tac- Toe Specifications

sets: Module [t: TYPE]

Exporting set, 0, UNIVERSE, {*l}, E, C, C, n,U, \,a,
setdesseq, sets.less, sets.times, seta.plus, sets.difference,
setsminus, seteq

Theory
set: TYPE
0: set
UNIVERSE: set
S1, S2, S3: VAR set
z,y: VAR t
{*I}: function[t -+ set]
E: function[t, set 4 bool]
C: function[set, set 4 bool]
c: function[set, set + bool]
n: function[set, set + set]
U: function[set, set -+ set]
\: function[set, set -+ set]
*I: function[set --r set]
seteq: function[set, set -+ bool]

SETdef: Axiom (z E {z}) A ((y E {z})

subdef: Axiom (S1 C S2)

psubdef: Axiom

interdef: Axiom (z E (S1 n S2)) u ((2 E S1) A (z E S2))

uniondef: Axiom (z E (S1 U S2)) e, ((2 E Sl) V (z E S2))

diffdef: Axiom (z E (S1\ S2)) e, ((2 E S1) A ~ (z E S2))

compdef: Axiom (z E n) e, (~ (z E Sl))

eqdef: Axiom S l = S2 * seteq(S1, S2)

e q x Formula seteq(S1, S1)

eqs: Formula seteq(S1, S2) e seteq(S2, Sl)

eq-t: Formula (seteq(S1, S2) A seteq(S2, S3)) 3 seteq(S1, S3)

-

z = y)

(V x: (z E S1) 3 (z E S2))

(SI C s2) (((2 E SI) 3 (2 E s2)) A (3 ~ : (y E s2) A l (y E SI)))

81

sb-t: Formula ((Sl C S2) A (S2 C S3)) 2 (S1 C S3)

seteqdef: Axiom

nulldef: Axiom (z E 0) = false

nulldef2: Axiom (Vx: l (z E Sl)) e, S1 = 0
unidef: Axiom (z E UNIVERSE) = true

sub-reflex: Formula (S1 5 S1) = true

interidentity: Formula S1 = (S1 n S1)

inter-commutative: Formula (S1 n S2) = (S2 n S1)

internull: Formula (S1 n 0) = 0
interassoc: Formula (S1 n (S2 n S3)) = ((Sl n S2) n S3)

union-commutative: Formula (S1 u S2) = (S2 u S1)

union-associative: Formula (S1 U (S2 U S3)) = ((Sl U S2) U S3)

unionidentity: Formula (S1 U S1) = S1

unionnull: Formula (S1 U 0) = S1

doubleneg: Formula = S1

negnull: Formula 5 = UNIVERSE

neg-uni: Formula UNIVERSE = 0
uni-union: Formula (S1 u E) = UNIVERSE

nullinter: Formula (S1 n sl> = 0
diffinter: Formula (S1\ S2) = (S1 n E)
End sets

seteq(S1,SZ) tj (vx: ((z E SI) 3 (z E S2)) A ((z E S2) 3 (z E SI)))

82 Appendix D. Tic- Tac-Toe Specifications

states: Module
Exporting state, SO, next

Theory
state: TYPE IS nat
SO: state = 0
SI, 92: VAR state
next: function[state + state] = (X s1 -+ state : (91 + 1))

nonneg: Axiom s1 2 SO

succ: Axiom s1 > SO 3 (3 82 : next(s2) = SI)

End states

83

ttt-ptypes: Module
Using facts, states, kbs, sets[fact], diEs

Exporting row, col, marker, player, count, turn, oppmove,
position, turnp, oppmove-p, positionp, tttptypes.equals, opp, com,
free, match-turn, matchappmove, matchposition, akb, cornerp,
middlep, centerp

Theory
row: nat = 1
col: nat = 2
marker: nat = 3
player: nat = 1
count: nat = 2
opp, com, free: datum
turn, oppmove, position: TYPE from fact
f: VAR fact
t , t l : VAR turn
0: VAR oppmove

dl, d2, d3: VAR datum
rx, cx, IN[, px: VAR datum
kbx: VAR kb
sx: VAR state
akb: kb
turn-p: function[fact + bool]
match-turn: function[kb, state, fact, datum, datum + bool] =

P , P1 , P2, P s , P4, P5, P6, P7, P8, P9: VAR position

(A kbx, sx, f, d l , d2+ bool :
(f E kbinst(kbx, sx))

A t--P(f 1
A (dl = wild V d l = f[player]) A (d2 = wild V d2 = f[count]))

oppmove-p: function[fact + bool]
match-oppmove: function[kb, state, fact, datum, datum + bool] =

(A kbx, sx, f, d l , d2+ bool :
(f E kbinst(kbx, sx))

A oppmove44f)
A (dl = wild V d l = f[row]) A (d2 = wild V d2 = f[col]))

a4 Appendix D. Tic- Tac- Toe Specifications

positionp: function[fact + bool]
matchqosition: function[kb, state, fact, datum, datum, datum + bool]

= (A kbx, sx, f, d l , d2, d3+ bool :
(f E kbinst(kbx, sx))

A poaitionp(f)
A (dl = wild V d l = f[row])

A (d2 = wild V d2 = f[col]) A (d3 = wild V d3 = f[marker]))

equals: function[position, position + bool] =
(Apl ,p2+b00l:

PI [row] = PZ [row]
A pi [col] = pz [col] A p1 [marker] = p2 [marker])

cornerp: function[fact -, bool] =

centerp: function[fact + bool] =

middlep: function[fact + bool] =

(A f+ bool : position+(f) A oddp(f[row]) A oddp(f[col]))

(A f+ bool : position+(f) A f[row] = 2 A f[col] = 2)

(A f + bool :
position+(f)

A ((....P(f[row]) A oddP(f[coll))
v (oddP(f[rowl) A evenP(f[coll))))

distinctxonstants: Axiom
opp # corn A com # free

A opp # free A opp # wild A com # wild A free # wild

t rnl thax: Axiom length(t) = 2

opplthax: Axiom length(o) = 2

poslthax: Axiom length(p) = 3

fact-type-1: Axiom turn-p(f) v oppmovep(f) v position&)

fact-type2: Axiom turnp(f) 3 -(oppmovep(f) v position+(f))

fact-type-3: Axiom oppmove-p(f) 3 -(turn-p(f) v position+(f))
fact-type-4: Axiom positionp(f) 3 -(oppmove-p(f) v turnp(f))

85

fact-type-5: Axiom tump(t) A l(tum_p(o) v tum-p(p))

fact-types: Axiom oppmove-p(o) A -(oppmovep(t) V oppmove-p(p))

fact-type-7: Axiom position&) A -.l(position-p(t) v positionp(0))

possible-positions: Axiom
(p E kbinst(akb, sx))

Ap[row] 5 3
* (p[row] 2 1

Ap[col] 2 1
Ap[col] 5 3

A marker] = free V marker] = opp V marker] =
corn))

duplicate-positions: Axiom
((p E kbinst(akb, sx))

A (p1 E kbinst(akb, sx)) A p[row] = pl[row] A p[col] = pl[col])
3 marker] = pl[marker]

possible-turns: Axiom
(t E kbinst(akb, sx))

tj ((t[player] = com V t[player] = opp) A p[count] 1 0)

End tttptypes

86 Appendix D. Tic-Tac-Toe Specifications

t t t i la l : Module
Using tttptypes, states, facts, kbs, sets[fact]

Exporting makemove, makemovelhs

Theory
f: VAR fact
r,c: VAR nat
tl, t2: VAR turn

s1,s2: VAR state
makemove: function[kb, state + state]
makemovelhs: function[kb, state -+ bool]

makemovedef: Axiom

Pl, P2, Ps, P4, P5, P6, P7, P8, P9, Po: VAR position

(3 t l , P1 :
if matchfurn(akb, SI, t l , corn, wild)

A matchposition(akb, 81, p1, wild, wild, free)
then makemove(akb, SI) = next(s1)

A -(tl E kbinst(akb, next(s1)))
A -.1(p1 E kbinst(akb, next(s1)))

A(3t2:
match-turn(akb, next(sl), t2, opp, wild)

A t2[count] = 1 + tl[count])
W P 2 :

match-position(akb, next(sl), p z , wild, wild, corn)
A P2 [row] = P1 [row] A P2 [col] = Pl[COl])

else makemove(akb, 91) = SI

endif)

makemovelhsdef Axiom
makemovelhs(akb, SI)

* (3 t l , P 1 :
match-turn(akb, SI, t l , corn, wild)

A matchposition(akb, 91, p1, wild, wild, free))

movenrder-1: Axiom
makemove(akb, SI) = next (51)

a7

 PI , P Z :
(matchposition(akb, s1,p1,2,2, free)

3 match-position(akb, next(sl),pz, 2,2, corn)))

movesrder2: Axiom
makemove(akb, 81) = next(s1)
* (3P l ,P2 , P s :

((lmatchposition(akb, sl,p1,2,2,fiee)
A matchposition(akb, sl,p2,1,l,fiee))

3 matchposition(akb, next(sl), ps, 1,1, corn)))

move-orderf : Axiom
makemove(akb, 81) = next(s1)
* (3Pl ,P2 2Ps ,p4:

((lmatchposition(akb, sl,p1,2,2,free)
A -match-position(akb, s1,p2,1,1, free)

3 matchposition(akb, next(sl),pd,l, 3, corn)))
A match-position(akb, SI, ps, 1,3, free))

move-order-4: Axiom
makemove(akb, SI) = next(s1)
* (3P1 ,P2 9P3 9P4, P5:

((-matchposition(akb, 81, p1,2,2, free)
A lmatchposition(akb, sl,p2,1,1,free)

A lmatch-position(akb, SI, ps, 1,3, free)
A match-position(akb, 81, p4,3,1, free))

3 matchposition(akb, next(sl), p5,3,1, corn)))

movenrder-5: Axiom
makemove(akb, 81) = next(s1)
* (3P l ,P2 ,Ps ,P4 ,P5,P6:

((-matchposition(akb, sl,p1,2,2,free)
A lmatchposition(akb, sl,p2,1,1,free)

A lmatchposition(akb, 81, ps, 1,3, free)
A lmatchposition(akb, ~1,p4,3,1, free)

A matchposition(akb, 81, p5,3,3, free))
3 matchposition(akb, next(sl), p6,3,3, corn)))

88 Appendix D. Tic-Tac-Toe Specifications

move~rder-6: Axiom
makemove(akb, SI) = next(s1)

* ((3 P l , p Z , P s , P 4 , P 5 , P 6 , P 7 :
((-match-position(akb, sI,p1,2,2,free)

A ymatchposition(akb, sl,p2,1,1, free)
A lmatch-position(akb, sl,ps,l, 3, free)

A -matchposition(akb, 81, p4,3,1, free)
A -match-position(akb, SI, p5,3,3, free)

A matchposition(akb, SI, p6,1,2, free))
1 match-position(akb, next(sl), p7,1,2, corn)))

move-order-7: Axiom
makemove(akb, 91) = next(s1)
* @PI 2 P2 9 PS , P4 , P5, P6, P7, P8:

((-match-position(akb, s1,pl, 2,2,free)
A -matchposition(akb, s1,pz, 1, 1, free)

A -.matchposition(akb, sl,pS,l, 3,free)
A imatchposition(akb, 81, p4,3,1, free)

A lmatchposition(akb, 81, p5,3,3, free)
A -matchposition(akb, 91, p6,1,2, free)

Amatch-position(akb, 81, p7,2,1, free))
1 matchposition(akb, next(sl), p8,2,1, corn)))

move-orders: Axiom
makemove(akb, SI) = next(s1)
* (3P l , P2 > PS , P4 , P5, P6, P7, P8, P9:

((lmatch_position(akb, s1,p1,2,2, free)
8 A lmatchposition(akb, 81,p2,1,1,free)

A lmatchposition(akb, sl,pS,l, 3, free)
A lmatchposition(akb, SI, p4,3,1, free)

A lmatchposition(akb, 91, p5,3,3, free)
A lmatchposition(akb, 81, p6,1,2, free)

Almatch-position(akb, 91, p7,2, I, free)

Amatchposition(akb, SI, p8,2,3, free))

89

3 match-position(akb, next(sl), p9,2,3, corn)))

move-order-9: Axiom
makemove(akb, SI) = next(s1)
* (3P l 9 P2 9 Ps 9 P4 , P5, P6, P7, P8, P9, Po:

((lmatchposition(akb, sl,p1,2,2, free)
A lmatchposition(akb, sl,p2,1,1, free)

A -matchposition(akb, 81, ps, 1,3, free)
A lmatchposition(akb, ~ 1 , ~ 4 , 3 , 1 , free)

A -.matchposition(akb, SI, p5,3,3, free)
A -match-position(akb, SI, p6,1,2, free)

Almatch-position(akb, SI, p7,2,1, free)

A-match-position(akb, SI, p8,2,3, free)

Amatchposition(akb, 81, p9,3,2, free))

3 matchposition(akb, next(sl), PO, 3,2, corn)))

End t t t l l s l

90 Appendix D. Tic- Tac- Toe Specifications

ttt-rls2: Module

Using tttptypes, states, facts, kbs, sets[fact]

Exporting win-col, win-row, windia, winxol-lhs, winiowlhs,
windialhs

Theory
f: VAR fact
t, tl , t2: VAR turn
p,cl, c2,pl,p2,ps,p4: VAR position
SI, s2: VAR state
win-col: function[kb, state + state]
winlow: function[kb, state + state]
windia: function[kb, state state]
win-collhs: function[kb, state + bool]
winiowlhs: function[kb, state + bool]
win-dialhs: function[kb, state 4 bool]

win-col-def: Axiom
(-1 ,P1 ,P2 , p s :

if match-turn(akb, SI, tl, com, wild)
A match-position(akb, 91, p1, wild, wild, com)

A matchposition(akb, SI, p z , wild, wild, com)
A matchposition(akb, SI, ps, wild, wild, free)

A Pl[COl] = P2 [col]
A P1 [row] # P2 [row]

A PS[COl] = P2 [toll
A Ps [row] # P1 [row] A PS [row] # P2 [row]

then (3p4 :
win-col(akb, SI) = next(s1)

A l (t 1 E kbinst(akb,next(sl))) .
A -(ps E kbinst(akb, next(s1)))

A matchposition(akb, next(sl), p4, wild, wild, corn)
A Pr[rowI = Ps[rowl

A p4 [col] = PS [col]

P f PS
A (vp:

3 ((p E kbinst(akb, 81))

e> (p E kbinst(akb,next(sl))))))

91

else win-col(akb, SI) = 81

end if)

win-rowdef: Axiom
(3tl , P1 , P2 , Ps:

if match-turn(akb, 81, tl, com, wild)
A matchposition(akb, 81, p1, wild, wild, com)

A match-position(akb, SI, p2, wild, wild, corn)
A matchposition(akb, SI, p s , wild, wild, free)

A Pl[COlI # P2 [col]
A p1 [row] = pz [row]

A Pz[row] = Ps[row]
A Ps [toll # Pl[COlI A P3 [4 # P2 [toll

then (3p4 :
winiow(akb, SI) = next(s1)

A l(t1 E kbinst(akb, next(s1)))
A l (p 3 E kbinst(akb, next(s1)))

A matchposition(akb, next(sl), p4, wild, wild, com)
A ~4 [row] = PS [row]

A P4 [c04 = Ps [col]

P # Ps
A(vp:

3 ((p E kbinst(akb, 81))

(p E kbinst(akb, next(s1))))))
else win_row(akb, SI) = SI
end if)

win-diadef: Axiom
(3 t i , P i ,P2 ,Ps:

if match-turn(akb, SI, tl, corn, wild)
A matchposition(akb, 81, p1, wild, wild, com)

A match-position(akb, SI, pa, wild, wild, corn)
A matchposition(akb, s1,ps, wild, wild, free)

A P1 [row] # P2 [row]
A Pl[COl] # P2[COl]

A P1 [row] # Ps [row]
A Pl[COl] # PS[COl]

A P2[roWl # PS[rowl

92 Appendix D. Tic- Tac- Toe Specifications

A P2 [toll # Ps [col]
A ((cornerp(p1)

A centerp(pz) A centerp(p3))
v (centerp(p1)

A cornerp(pz) A cornerp(ps)))
then (3p4 :

windia(akb, 81) = next(s1)
A l (t 1 E kbinst(akb, next(s1)))

A ~ (p s E kbinst(akb, next(s1)))
A match-position(akb, next(sl), p4, wild, wild, com)

A ~4[row] = ps[row]
A P4 [coll = Ps [col]

P f P s
A(vp:

3 ((p E kbinst(akb, 81))
e+ (p E kbinst(akb, next(s1))))))

else windia(akb, 81) = s1
endif)

win-collhsdef: Axiom
win-collhs(akb, 81)

* (% ,P1 YP2 YPS:
matchfurn(akb, 81, tl, com, wild)

A match-position(akb, SI, p1, wild, wild, com)
A match-position(akb, 51, p z , wild, wild, com)

A P1 [col] = Pz [col]
A P1 [row] # P2 [row]

A match-position(akb, s1,ps, wild, wild, free)
A PS[COl] = P2[C09)

winiowlhsdefi Axiom
winiowlhs(akb, SI)

* (% , P 1 , P z , P s :
match-turn(akb, 81, t l , corn, wild)

A match-position(akb, s1,p1, wild, wild, com)
A matchposition(akb, 81,p2, wild, wild, corn)

A matchposition(akb, 81, ps, wild, wild, free)
A P1 [toll # P2 [col]

93

win-dialhs-def: Axiom
windialhs(akb, 81)

* (3 t l , P1 , P2 , Ps :
match-turn(akb, 81, tl, com, wild)

A rnatchposition(akb, s1,p1, wild, wild, corn)
A matchposition(akb, 81, p2, wild, wild, corn)

A matchposition(akb, 81, p s , wild, wild, free)
A P1 [row] # P2 [row]

A P1 [col] # P2 [toll
A P1 [row] # Ps [row]

A PI [col] # PS [col]
A ~2 [row] # PS [row]

A ~2 (~011 # PS[CO~]

A ((cornerp(p1)
A centerp(p2) A centerp(p3))

v (centerp(p1)
A cornerp(p2) A cornerp(p3))))

End ttt-rls2

-&. C-

94 Appendix D. Tic-Tac-Toe Specifications

tttils3: Module

Using tttptypes, states, facts, kbs, sets[fact], diffs

Exporting blk sol, blk ow , blk dia, blk xollhs , blk low lhs ,

Theory

f: VAR fact
t l , t2: VAR turn
cl,c2,pl,p2,ps,p4: VAR position
SI, 82: VAR state
blk-col: function[kb, state -+ state]
blkiow: function[kb, state --* state]
blkdia: function[kb, state -+ state]
blkxollhs: function[kb, state ---t bool]
blkJowlhs: function[kb, state -+ bool]
blkdialhs: function[kb, state ---t bool]

blk-col-def: Axiom

blkdialhs

(-1 , P1 , P2 9 Ps :
if match-turn(akb, SI, tl, com, wild)

A matchposition(akb, SI, p1, wild, wild, opp)
A matchposition(akb, SI, p2, wild, wild, opp)

A P1 [col] = P 2 [4
A P1 [row1 # P2 [row1

A matchposition(akb, SI, ps, wild, wild, free)
A P2 [col] = Ps [co4

then (3p4 , t2:
blk-col(akb, SI) = next(B1)

A l (t 1 E kbinst(akb, next(s1)))
1 A l (p s E kbinst(akb, next(s1)))

Amatchposition(akb, next(sl), p4, ps(row], ps[col], com)

A match-turn(akb, next(sl), t2, opp, wild)
A t2[count] = 1 + tl [count])

else blk-col(akb, SI) = SI

endif)

blkiowdef: Axiom
(3 t l , P l ,P2 ,ps:

95

if matchfurn(akb, SI, tl, com, wild)
A match-position(akb, s1,p1, wild, wild, opp)

h matchposition(akb, s1,p2, wild, wild, opp)
A p1 [row] = pz [row]

A Pl[COl] # P2 [toll
A matchposition(akb, 81, ps, wild, wild, free)

A P2 [row] = Ps [row]
then (3p4 , t2:

blk-row(akb, SI) = next(s1)
A l(t1 E kbinst(akb, next(s1)))

A -(ps E kbinst(akb,next(sl)))
Amatch-position(akb, next(sl),p4,ps[row],ps[col], com)

A match-turn(akb, next(sl), t2, opp, wild)
A t2[count] = 1 + tl[count])

else blkJow(akb, 81) = s1
end if)

blk-diadefi Axiom
(3 t l , P l , n , P s :

if match-turn(akb, 81, tl, com, wild)
A match-position(akb, s1,p1, wild, wild, opp)

A matchposition(akb, SI, p2, wild, wild, opp)
A matchposition(akb, 91, ps, wild, wild, free)

A P1 [row] # P2 [row]
A Pl[CO~] # P2[COl]

A I Pl[rowl - Pz[roWl I=[Pl[COl] - PZ[COl] I
A I Pl[row] - Ps[row] I=I Pl[COl] - Ps[COl] I

A I ~2[rowI - PS[~OW] I=I P ~ [C O ~] - PS[CO~] I
then (3p4 , t2:

blkdia(akb, 81) = next(s1)
A l(t1 E kbinst(akb, 82))

A -(ps E kbinst(akb, 82))

A matchposition(akb, 82, p4, wild, wild, com)
A Pr[row] = Ps[row]

A P4[COl] = Ps[COl]
A match-turn(akb, 82, t2, opp, wild)

A t2[count] = 1 + tl[count])
else blk-dia(akb, sl) = s1

96 Appendix D. Tic-Tac-Toe Specifications

endif)

blkxollhs-def: Axiom
b lkd lhs (akb , 91)

* (3 t l ,P1 ,P2 ,ps:
match-turn(akb, 81, t l , corn, wild)

A matchposition(akb, 81, p1, wild, wild, opp)
A matchposition(akb, s1,p2, wild, pl[col], opp)

A P1 [row] # P2 bowl
A match-position(akb, $1, ps, wild, pz[col], free))

blkiowlhsdef Axiom
blkrowlhs(akb, 91)

* (% ,P1 ,P2 rP3:
matchfurn(akb, 81, f l y com, wild)

A match-position(akb, s1,p1, wild, wild, opp)
A match-position(akb, s1,p2,p1[row], wild, opp)

A Pl[COl] # P2 [toll
A match-position(akb, 81, ps, row], wild, free))

blkdialhs-def Axiom
blkdialhs(akb, 91)

* (3 t l ,P1 ,P2 , p s :
match-turn(akb, $1, tl, corn, wild)

A matchposition(akb, s1,pl, wild, wild, opp)

End t t trIs3

97

tttils4: Module

Using tttptypes, states, facts, kbs, sets[fact]

Exporting blkxc, blk-cm, blkxclhs, blk-cm-lhs

Theory
f: VAR fact
r,c: VAR nat
t l , t2: VAR turn

SI, sz: VAR state
blk-cc: function[kb, state + state]
blk-cm: function[kb, state -+ state]
blk-cclhs: function[kb, state + bool]
blk-cmlhs: function[kb, state + bool]

blk-ccdef: Axiom

P, PX, PI, PZ, Ps, P4, p5: VAR position

(3 t l 9 PI 9 Pz 9 PS 9 P4 :
if match-turn(akb, SI, t l , com, 3)

A matchposition(akb, 81, p1, wild, wild, opp)
A matchposition(akb, s1,p~, wild, wild, opp)

A matchposition(akb, SI, p3,2,2, com)
A matchposition(akb, 81, p4, wild, wild, free)

Pl[row] # Pz[row]
A Pl[CO~] # Pz [col]

A cornerp (pl)
A cornerp(p2)

A centerp(p3)
A middlep(p4)

A (Vpx:
((px E kbinst(akb, SI))

A px[marker] # free)
* (PX = PI

v PX = PZ v PX = P3))
then blk-cc(akb, 81) = next(s1)

A -(tl E kbinst(akb, next(s1)))
A l(p4 E kbinst(akb, next(s1)))

A (3t2:
match-turn(akb, next(sl), t2, opp, wild)

98 Appendix D. Tic-Tac-Toe Specifications

A t2[count] = 1 + tl[count])
A (3 ~ 5 :

matchposition(akb, next(sl), p5, wild, wild, corn)
A p5[row] = p4[row]

A P ~ [c o ~] = P~[co~]
A(vp:

(P # P4 A P # P5)
((p E kbinst(akb, SI))

e, (p E kbinst(akb, next(s1))))))

else blk-cc(akb, 91) = s1
endif)

blk-cm-def: Axiom
(3t1 ,P I ,PZ ,PS , ~ 4 :

if match-turn(akb, 91, t l , corn, 3)
A matchposition(akb, s1,p1, wild, wild, opp)

A match-position(akb, s l ,p2 , wild, wild, opp)
A matchposition(akb, 81, ps, 2,2, corn)

A match-position(akb, 91, p4, wild, wild, free)
A P1 [row] # P2 [row]

A Pl[COlI # P2[COlI
A cornerp (PI)

A middlep(p2)
A cornerp(p4)

A ((P4[IOW] = Pl[row] A P4[COl] = p2[col])

A pr[col] = Pl[COl]))
v (p4[row] = p2[row]

then blk-cm(akb, 81) = next(s1)
A l (t1 E kbinst(akb, next(s1)))

A i(p4 E kbinst(akb, next(s1)))
A(3t2:

match-turn(akb, next(sl), t2, opp, wild)
A t2[count] = 1 + tl[count])

A (3~5:
matchposition(akb, next(sl), p5, wild, wild, corn)

A p5[row] = p4[row]
A p 5 [d] = p4[d]

A(vp :

99

P # P4
(p E kbinst(akb,~l)) 3 (p E

kbinst (akb, next(s1)))))
else blk-cm(akb, SI) = s1
endif)

blk-cclhs-def: Axiom
blk-cclhs(akb, 91)

* (3t l 9 P1 , P2 9 P3 , P4 :
match-turn(akb, SI, t l , com, 3)

A match-position(akb, 81, p1, wild, wild, opp)
A matchposition(akb, s1,p2, wild, wild, opp)

A matchposition(akb, SI, p 3 , 2 , 2 , com)
A matchposition(akb, ~1,p4, wild, wild, free)

A P1 [row] # P2 [row]
A pl[col] # p2[col] A cornerp(p1) A cornerp(p2) A

middlep(p4))

blk-cmlhsdef: Axiom
blk -cclhs (ak b , s 1)

* (3tl ,P1 ,P2 I P S 9P4:
match-turn(akb, 81, tl, com, 3)

A match-position(akb, 81, p1, wild, wild, opp)
A matchposition(akb, SI, p2, wild, wild, opp)

A matchposition(akb, SI, ps , 2 , 2 , corn)
A matchposition(akb, SI, p4, wild, wild, free)

A P1 [row] # P2 [row]
A P1 [toll # P2 [toll

A cornerp(p1)
A middlep(p2)

A cornerp(p4)
A ((P~[~ow] = ~i[row] A P ~ [c o ~] = P~[co~])

v (p4[row] = ~ ~ [r o w] ~p,[col] =
P W I)))

End t t t ~ l s l i

100 Appendix D. Tic- Tsc- Toe Specifics tions

guarded-ops: Module

Ueing tttptypes, ttt_rlsl, ttt-rld, tttils3, tttils4, states, kbs

Exporting t t t ap , g-winxol,g-winiow,g-windia,gblk-cc,
ghlk-cm, ghlkxol, gblkiow, ghlk-dia, g-mkemve

Theory
ttt-op: TYPE from function[kb, state + state]
g-winxol: t t t a p
g-winxow: t t t a p
g-windia: t t t a p
g-blk-cc: t t t a p
g-blk-cm: ttt-op
g-bik-col: ttt-op
g-blkrow: ttt_op
g-blk-dia: ttt-op
g-mkemve: t t t a p
gop: VAR ttt-op
an: VAR state

g-winxoldef: Axiom
g-win-col(akb, sn)

= if win-collhs(akb,s,) then win-col(akb,s,) else sn end if

g-winxowdef: Axiom
g-winJow(akb, sn)

= if ((iwin-collhs(akb, Sn)) A winxowlhs(akb, sn))
then winJow(akb, an)
eke 8,

end if

g-windiadef: Axiom
g-windia(akb, 8n)

= if ((l(winxollhs(akb, sn) V win_rowlhs(akb, an)))
A windialhs(akb, sn))

then win-dia(akb, sn)
else 8,

end if

10 1.

g-blkxc-def: Axiom
gblk-cc(akb, s,)

= if ((-(windlhs(akb, s,)

A blk-cc-lhs(akb, 8,))

V winrowlhs(akb, s,) V windialhs(akb, s,)))

then blkxc(akb, s,)
else s,
end if

g-blkxmdef: Axiom
gblk-cm(akb, s,)

= if ((-(win,collhs(akb, 8,)

V winiowlhs(akb, s,)
V win-dialhs(akb, s,) v blk-cclhs(akb, s,)))

A blk_collhs(akb, s,))
then blkxol(akb, s,,)
else s,
end if

g-blk-col-def: Axiom
gblk-col(akb, s,)

= if ((-(win-collhs(akb, 8,)

v winiowlhs(akb, 8,)

V windialhs(akb, s,)
vblkxclhs(akb, s,) vblkxmlhs(akb, 8,)))

A blk-collhs(akb, s,))
then blk-col(ak b, a,,)
else s,
end if

g-blk_rowdef: Axiom
g-blk-row(akb, s,)

= if ((-(winxollhs(akb, s,)
V winiowlhs(akb, 8,)

V windiaJhs(akb, s,)
V blk-cclhs(akb, sn)

Vblk-cmlhs(akb, s,)vblk-collhs(akb, 8,)))

102 Appendix D. Tic- Tac- Toe Specifica tions

A blklowlhs(akb, an))
then blkxow(akb, 8n)
else an
end if

gblk -diadef: Axiom
gblkdia(akb, s,,)

= if ((-(win_collhs(akb, sn)
V winiowlhs(akb, s,,)

V win-dialhs(akb, 8,)

V blk-cc-lhs(akb, an)
V blkxmlhs(akb, an)

Vblk-colh(akb, sn)Vblkiowlhs(akb, ~ n)))

h blk-dialhs(akb, sn))
then blk-dia(ak b , sn)
else 8,

end if

gmkemvedef: Axiom
gmkemve(akb, sn)

= if ((i(win_collhs(akb, s,,)
V win_rowlhs(akb, an)

V windialhs(akb, an)
V blk-cclhs(akb, an)

V blk-cmlhs(akb, an)
V blk -collhs (ak b , an)

Vblk i o w l h s (ak b , sn) Vblk dialhs(akb , sn)))

A makemovelhs(akb, sn))
then makemove(akb, sn)
else an
end if

gop-def: Axiom
gop = g-win-col

v gop = g-winlow

103

V gop = g-windia
v gop = gblkxc

V gop = gblk-cm
V gop = g-blkxol

V gop = g-blksow V gop = ghlk-dia V gop = gmkemve

gmmax: Axiom true

End guarded-ops

104 Appendix D. Tic-%- Toe Specifications

safe-ttt: Module
Using ttt-ptypes, kbs, states, facts, diffs

Exporting safe, wongame, losenextmove, unsafe-config-l,
unsafe-config2, unsafe-config3, unsafexonfig-4

Theory
sn,sm: VAR state
tl, t2: VAR turn
pl,p2,ps,p4: VAR position
kbx: VAR kb
won-game: function[kb, state + bool]
losenextmove: function[kb, state + bool]
unsafe-codgl: function[kb, state + bool]
unsafe-config2: function[kb, state -, bool]
unsafexonfig3: function[kb, state + bool]
unsafe-config-4: function[kb, state + bool]
safe: function[kb, state + bool]

safedef: Axiom
safe(kbx, Sn)

won-game(kbx, sn)
V y(losenextmove(kbx, an)

V unsafe-config-l(kbx, an)
V unsafeeconfig2(kbx, Sn)

v unsafe-config-3(kbx, an) V unsafe-config-4(kbx, sn))

won-gamedef: Axiom
won-game(kbx, sn)

* ((3Pl ,pZ,Ps :
matchposition(kbx, an, p1, wild, wild, com)

A matchposition(kbx, an,-, wild, wild, corn)
A match-position(kbx, sn, ps, wild, wild, com)

APl#PL
AP2 # PS

APlZPS
A ((P1 [coy = P2 [col] A P2 [col] = Ps [coy)

v (pi[row] = p2[row] A p2[row] = ps[row])
v (cornerp(p1)

105

losenextmovedef: Axiom
losenextmove(kbx, 8,)

* (3 t l , P l , p 2 , p s :
matchfurn(kbx, s,, t l , opp, wild)

A matchposition(kbx, s,, p1, wild, wild, opp)
A match-position(kbx, sn,p2, wild, wild, opp)

A matchposition(kbx, s,,ps, wild, wild, free)
A P l f P 2

A ((cornerp(p1)
A cornerp (p2)

A centerp(p3)
A Pr[row] # p2[rowl

A PI [toll # P2 [toll
v (p1[row] = p2[row] APz[row] = Ps[row])

v (Pl[COl] = P2[col] A Pz[col] = Ps[COl])))

unsafe-config-1 -def: Axiom
unsafe-config_l(kbx, 8,)

* (It1 , P1 , P2 , Ps 2 P4 :
matchfurn(kbx, s,, t l , opp, 4)

A match-position(kbx, s,, p1, wild, wild, com)
A match-position(kbx, s,, p2, wild, wild, corn)

h matchposition(kbx, s,, ps, wild, wild, opp)
A matchposition(kbx, s,, p4, wild, wild, opp)

AP1# P2
APs#P4

Acenterp (PI) Acornerp(p2) Acornerp (ps) Acornerp (~ 4))

unsafexonfig2def: Axiom
unsafe-config2(kbx, 8,)
* (3 tl , P1 , P2 , Ps , P4 :

matchfurn(kbx, s,, t l , opp, 4)

106 Appendix D. Tic-Tac-Toe Specifications

A match-position(kbx, an, pi, wild, wild, com)
A match_position(kbx, s,,, pz, wild, wild, com)

A match_position(kbx, an, ps, wild, wild, opp)
A matchposition(kbx, an, p4, wild, wild, opp)

AP1# P2
A Ps # P4
Amiddlep(p1)Amiddlep(p2)Acornerp(ps)Acornerp(p4))

unsafexonfig3def: Axiom
unsafe-config 3 (kbx , sn)
* (3t l Y P1 ,P2 ,Ps Y P4 :

match-turn(kbx, s,,, tl , opp, 4)
A match-position(kbx, Sn, p1, wild, wild, com)

A matchposition(kbx, sn, p2, wild, wild, corn)
A match-position(kbx, s,, ps, wild, wild, opp)

A match-position(kbx, ~ n , p4, wild, wild, opp)
AP1# P2

A Ps # P4
Acornerp (PI) Acornerp (p2) Amiddlep (ps) Amiddlep (p4))

unsafe-config-4,def: Axiom
unsafe-config-4(kbx, sn)
* Wl ,P1 ,P2 ,Ps 9P4:

match-turn(kbx, sn, tl, opp, 4)
A matchposition(kbx, sn,p1, wild, wild, corn)

A match-position(kbx, sn, p2, wild, wild, corn)
A match-position(kbx, sn, ps, wild, wild, opp)

A match-position(kbx, an, p4, wild, wild, opp)
AP1# P2

APSZP4
A centerp(p1)

A cornerp(pz)
A cornerp(p3)

A middlep(p4)
Al((p2 [row] = Ps [row] AP2 [..I] = P4 [col])

107

End safeftt

108 Appendix D. Tic-Tac-Toe Specifications

initialstate: Module
Using tttptypes, kbs, states, facts, sets(fact1

Theory
p,p1: VAR position
t,tl: VAR turn
sx: VAR state

initial_positions: Axiom (p E kbinst(akb, SO)) e marker] = free

initial-turn: Axiom
(t E kbinst(akb, SO)) t[player] = opp A t[count] = 0

End initialstate

109

initialproof: Module
Using tttptypes, safe-ttt, states, kbs, initialstate

Theory
sis: Lemma safe(akb, SO)

Proof
p: VAR position
rx, cx, mx: VAR datum

nextmove: Lemma llosenextmove(akb, SO)

nmp: Prove nextmove from
losenextmovedef {kbx t akb, an t SO},
initialpositions {p + plQpls},
distinct-constants

configl: Lemma -unsafe-config-l(akb, SO)

clp: Prove configl from
unsafe-config-1-def {kbx + akb, an t SO},
initialpositions {p + plQpls},
distinct-constants

config2: Lemma -unsafe_config2(akb, SO)

c2p: Prove config2 from
unsafe-config2-def {kbx t akb, an + SO},
initialpositions {p t plOpls},
distinct -constants

config3: Lemma -.lunsafe_config3(akb, SO)

c3p: Prove config3 from
unsafe-config-3-def {kbx t akb, sn t SO},
initialpositions {p t plQpls},
distinct -const ants

config4: Lemma wm-mfe-configd(akb, SO)

c4p: Prove config4 from
unsafe-config-4-def {kbx + akb, an
initialpositions {p + plQpIs},

SO},

110 Appendix D. Tic-TaeToe Specifications

distinct _constants

sisp: Prove sis from
safedef {kbx t akb, a,, t SO},
next rmove,
configl,
config2,
config3,
config4

End initialproof

111

gwrproof: Module

Using guardedAps, safe-ttt, tttptypes, states, t t t l ls2

Theory
s,,: VAR state

safe-gwrstep: Lemma safe(akb, sn) 3 safe(akb, g-winiow(akb, sn))

Proof
no-transition: Lemma

(safe(akb, s,)Ag-win_row(akb, s,) = sn) 3 safe(akb, g-win_row(akb, s,,))

ntp: Prove no-transition

safe-trans: Lemma
(safe(akb, s,,) A g-winiow(akb, sn) = next(s,))

3 safe(akb, g-winiow(akb, s,,))

stll: Lemma
g-win_row(akb, sn) = next(s,,)

3 (win-rowlhs(akb, s,,) A winiow(akb, sn) = next(s,,))

stllp: Prove stll from g-winiowdef {s,, + s,Qcs}

st12: Lemma win_row(akb, s,,) = next(s,) 3 won_game(akb, win_row(akb, s,,))

stl2p: Prove st12 from
wkrowdef {SI t s,,@cs, p t pl@lpls},
winlow-def (81 t s,,Qcs, p t p2Qpls},
wongamedef {kbx t akb,
s,, t next(s,@cs),
P1 +- PlQPlS,
P2 +- PZQPlS,
PS PlQPW,

distinct-constants

stpp: Prove safe-trans from
stll {sn s,QCS},

112 Appendix D. Tic-&- Toe Specifications

st12 {an + SnQCS},
safedef {kbx + akb, sn + win-row(akb, SnO-)}

sgsll: Lemma winrow(akb, Sn) = sn V win-row(akb, Sn) = next(sn)

sgsllp: Prove sgsll fiom winJow-def (81 c- an@-}

safegwrstepproof: Prove safegwrstep from
no-transition {an t SnQ-},
safe-trans {an + SnO-},

g-winiowdef {an + SnQcs}
Sgsll {en + sn@cs},

End gwrproof

113

gwcproof: Module
Using guardedaps, safe-ttt, tttptypes, states, t t t i ls2

Theory
8,: VAR state

safe-gwcstep: Lemma safe(akb, 8,) 3 safe(akb, g-win-col(akb, 8,))

Proof
no-transition: Lemma

(safe(akb, 8,) A g-win-col(akb, 9,) = 9,) 3 safe(akb, g-win-col(akb, s,))

ntp: Prove no-transition

safe-trans: Lemma
(safe(akb, 8,) A g-win-col(akb, 8,) = next(s,))

3 safe(akb, g-win-col(akb, 9,))

stll: Lemma
g-win-col(akb, s,) = next(s,)

3 (win-collhs(akb, s,) A win-col(akb, 8,) = next(s,))

stllp: Prave stll &om g-win-coldef {s, t s,Qcs}

st12: Lemma win-col(akb, 8,) = next(s,) 3 won-game(akb, winxol(akb, 8,))

stl2p: Prove st12 fkom
winxoldef {SI t s,Qcs, p t plQpls},
winxoldef (81 + snQcs, p t prQpls},
won-gamedef {kbx t akb,
s, t next(s,Qcs),
P1 PlQPlS,
P2 P2QPlS9
PS P4QPW,

distinctxonstants

stpp: Prove safe-trans from
stll (8 , t s,QCS},

114 Appendix D. Tic-Tac-Toe Specifications

st12 {Sn + s~QCS},
safedef {kbx akb, 8, + win-col(akb, Sn&S)}

sgsll: Le- win-col(akb, 8,) = v winZol(akb, sn) = next(s,)

sgsllp: Prove sgsll from win-coldef {SI t s,Qcs}

safegwcstep-proof: Prove safe-gwcstep from
no-transition {s, t s,Qcs},
safe-trans {an + SnQa},

g-win-col-def {an t- S,QCS}

sgsll {sn + snQcs},

End gwc-proof

115

gwd-proof: Module

Using guarded-ops, safe-ttt, tttptypes, states, t t t i l d

Theory
s,,: VARstate

safe-gwdstep: Lemma safe(akb, sn) 3 safe(akb, g-windia(akb, s,,))

Proof
no-transition: Lemma

(safe(akb, s,,)Ag-windia(akb, s,,) = sn) 3 safe(akb, g-windia(akb, sn))

ntp: Prove no-transition

safe-trans: Lemma
(safe(akb, sn) A g-windia(akb, s,,) = next(s,))

3 safe(akb, g-windia(akb, sn))

stll: Lemma
g-win-dia(akb, sn) = next(s,)

3 (windialhs(akb, s,,) A windia(akb, sn) = next(s,))

stllp: Prove stll from g-windiadef {s,, t s,Qcs}

st12: Lemma windia(akb, s,,) = next(s,,) 2 won-game(akb, windia(akb, s,,))

stl2p: Prove st12 from
windiadef (81 t s,,@cs, p e plQpls},
windia-def (81 t s,,Qcs, p t p2Qpls},
won-gamedef {kbx t akb,
s,, t next (s,Qcs),
Pl PlQPlS,
P2 +- PtQPlS,
PS PrQPlSI,

distinct-constants

stpp: Prove safefrans from
stll {sn + s,QCS},

116 Appendix D. Tic- Tac- Toe Specifications

st12 {an + SnQCS},
safedef {kbx + akb, 8, + windia(akb, an@cs)}

sgsll: Lemma windia(akb, an) = an V windia(akb, an) = next(an)

sgsllp: Prove sgsll from windiadef {SI t anOcs}

safegwdstep-proof: Prove sa feqds tep from
no-transition {Sn + SnQm},

safe-trans {an + an@=},

g-windiadef { Sn + SnQcs}

sgsll {an + an@=},

End gwdproof

Appendix E

Backward-Chaining System

(def un remember (new)
"Places a f a c t on the *facts* list i f it is not already there."
(cond ((member new *facts* : t e s t #'equal) n i l)

(t (setf *facts* (cons new *facts*) 1
new) 1)

(defun r e c a l l (fact)
"Tests t o see i f a f a c t is already asserted on the *facts* list."
(cond ((member f a c t *facts* : t e s t #'equal) f a c t)

(t n i l) 1)

(defun f a i l e d (fact)
"Tests t o see if a previous attempt t o asser t the f a c t fa i led ."
(cond ((and (not (reca l l f a c t) 1

(member f a c t *asked* : t e s t #'equal)
t)
(t n i l) 1)

(defun t e s t i f + (rule)

can be sa t i s f ied . "
"Attempts t o verify if each condition i n the i f s clause

(prog (ifs)
(setf ifs (cdaddr rule))
(return

117

118 Appendix E. Backward-Chaining System

(loop
(cond ((nul l if s) (return t))

((i f (eql (caar ifs) 'not)

(verify (car i f s)))
(setf ifs (cdr i fs)))

(t (return n i l) 1) 1) 1)

(not (verify (cadar i f s)

(defun t e s t i f (rule)
"Tests t o see i f each conditions i n the i f s clause

(prog (ifs)
has already been asserted."

(setf ifs (cdaddr rule))
(return
(loop
(cond ((null ifs)(return t))

((i f (eql (caar i f s) 'not)

(reca l l (car ifs)))
(setf i fs (cdr ifs)))

(t (return n i l) 1) 1) 1)

(fa i led (cadar ifs))

(defun inthen (fact)
"Returns a list of ru les for which f a c t occurs on the RHS.'l
(mapcan # ' (lambda (r)

(cond ((thenp f a c t r)
(list r) 1) 1

rules) 1

(defun thenp (fact rule)
"Test t o see i f a f a c t is i n the RHS of a rule.If
(member f a c t (cadddr rule) : t e s t #'equal))

(defun usethen (rule)
IvAsserts the RHS of a ru le whose LHS has been jus t i f ied ."
(l e t ((thens (cdr (cadddr r u l e))) (success n i l))

(loop
(cond ((nul l thens) (return success))

((remember (car thens))

119

(format t "-%Rule <'A>'%'tdeduces: -An
(cadr rule) (car thens))
(setf success t)
(setf thens (cdr thens)))))))

(defun tryrule (rule)
"Attempts to use a rule."
(and (testif rule) (usethen rule)))

(defun tryrule+ (rule)
"Attempts to use a rule.
(and (testif + rule) (usethen rule) 1)

Uses a recursive call to verify."

(defmacro get-question (fact)
'(cadr (assoc fact *questions* :test #'equal)))

(defun verify (fact)
"Main procedure which attempts to establish a fact."
(pro8 (ri r2)

(cond ((recall fact)(return t)))
(setf rl (inthen fact))
(setf r2 rl)
(if (null ri)

(cond ((member fact *asked* :test #'equal) (return nil) 1
((yes-or-no-p "-%-A?" (get-question fact))
(remember fact)
(return t))
(t (setf *asked* (cons fact *asked*))

(return nil) 1))
loopl
(cond ((null rl)

(go loop2))

(return t) 1)
((tryrule (car ri))

(setf r1 (cdr ri))
(go loopl)
loop2
(cond ((null r2) (go exit))

((tryrule+ (car r2))

120 Appendix E. Backward-Chaining System

(return t)))
(setf r2 (cdr r2))
(go loop2)
exit
(return nil)))

(defun diagnose 0
"Top level function which conducts diagnosis.Il
(let ((pos *hyps*)(*asked* nil)(*facts* nil))
(declare (special *asked* *facts*))
(loop
(cond ((null pos)
(format t "'%No diagnosis available.")
(return nil))

(format t n-7giagnosis: 'A. (car pos))
(return (car pas>)>>

((verify (car pos))

(setf pos (cdr pas)>>>>

(defvar *rules* nil
"The list of current rules in the system.")

(defmacro define-rule (&rest rulebody)

ing to type in one long list of rules."
"A macro to make typing in rules more intuitive --Avoids hav-

'(setf *rules*
(append *rules*
(list (cons 'rule ' , rulebody)) 1)

(def var *questions* nil
"The list of queries to establish ground facts.")

(def macro phrase-question (fact question)

ate facts more intuitive."
"A macro to make typing in questions to be used to substanti-

'(setf *questions*
(cons (list ' ,fact .question)

questions) 1)

121

(defun initialize (1
(setf *rules* nil)
(setf *questions* nil) 1

(defmacro hypothesis (hest hlist)
"A macro to make entering hypothesis more intuitive."
'(setf *hyps* '.hlist))

122 Appendix E. Backward- Chaining System

Appendix F

Heuristics for Electrical
System Diagnosis

...
1 . 1

;;; small rnle base for diagnosis of problems in an automobile
;;; electrical system. ...
D I I

(initialize 1

(def ine-rule rl
(if (engine wont start)

(starter doesnt turn)
(bad battery))

(then (replace or repair battery)))

(phrase-question (engine wont start)
IIDoes the engine FAIL to start")
(phrase-question (starter doesnt turn)
IIDoes the starter motor FAIL to turnn)

(define-rule r2
(if (engine wont start)

(starter doesnt turn)
(not (bad battery))
(jump solenoid starter turns)

124 Appendix F. Heuristics for Electrical System Diagnosis

(bad ignition) 1
(then (replace or repair ignition)))

(phrase-question (jump solenoid starter turns)
"Does the starter turn normally when a jumper is connected
across the battery and starter posts of the solenoid")

(def ine-rule r3
(if (engine wont start)

(starter doesnt turn)
(not (bad battery) 1
(not (bad ignition)
(jump solenoid no response)

(then (replace or repair solenoid)) 1

(phrase-question (jump solenoid no response)
"Does the starter FAIL to turn at all when a jumper is
connected across the battery and starter posts of the solenoid")

(def ine-rule r4
(if (engine wont start)

(starter doesnt turn)
(not (bad battery))
(jump solenoid starter turns))

(then (replace or repair starter) 1)

(def ine-rule r6
(if (engine wont start)

(starter doesnt turn)
(jump solenoid starter buzzes))

(then (replace or repair starter)))

(phrase-question (jump solenoid starter buzzes)
"Does the starter buzz or turn very slowly when a jumper
is connected across the battery and starter posts of the
solenoid")

(def ine-rule r6

(if (battery case cracked))
(then (bad battery) 1)

(phrase-question (battery case cracked)
"Is the battery case cracked")

(def ine-rule r7
(if (battery connections corroded))
(then (bad battery)))

(phrase-quest ion (battery connect ions corroded)
"Are the battery clamps and posts corrodedH)

(def ine-rule r8
(if (battery cells low))
(then (bad battery)))

(phrase-question (battery cells low)
"1s the state of charge in any of the cells lower
than normal")

(def ine-rule 1-9
(if (no power at ignition))
(then (bad ignition) 1)

(phrase-question (no power at ignition)
nDoes the needle of a voltmeter connected t o the start
post of the solenoid fail to move when the key is jiggledH)

(def ine-rule rlO
(if (flickers at ignition))
(then (bad ignition)))

(phrase-question (flickers at ignition)
"Does the needle of a voltmeter connected to the start post
of the solenoid flicker when the key is jiggledH)

(hypothesis
(replace or repair battery)

125

126 Appendix F. Heuristics for Electrical System Diagnosis

(replace or repair ignition)
(replace or repair solenoid)
(replace or repair starter))

Appendix G

Derived Expert System
Rules for Diagnosis

. . . .
1 1

;; simple expert system rule set for diagnosis of problems
;; in a car's electrical system. ..
1 1

(initialize)

(def ine-rule dl
(if (power at cells))
(then (power at battery)))

(def ine-rule dla
(if (cell levels normal))
(then (power at cells)))

(phrase -que st ion (cell levels normal)
"Are all of the voltage levels of the individual battery
cells normal")

(def ine-rule d2
(if (power at battery)

(good battery)
(then (power at ignition) 1)

127

128 Appendix G. Derived Expert System Rules for Diagnosis

(def ine-rule d2a
(if (not (bad battery case))

(then (good battery)
(not (bad battery connections) 1)

(phrase-question (bad battery case)
"Are there any cracks or damage to the battery casett)
(phrase -quest ion (bad battery connections
"Are the battery posts and cable clamps corrodedtt)

(def ine-rule d3
(if (power at ignition)

(good ignition))
(then (power at points)

(power at solenoid)))

(def ine-rule d3a
(if (not (open ignition switch))

(then (good ignition)))
(not (sporadic ignition)))

(phrase-question (open ignition switch)
"Does a voltmeter connected to the starter post of the

(phrase -quest ion (sporadic ignition)
ItDoes the needle of a voltmeter flicker when the key is

solenoid fail to move when the key is turned to the start positiontt)

j iggledtt)

(def ine-rule d4
(if (power at points)

(good points))
(then (power at coil)))

(def ine-rule d4a
(if (not (point gap off))

(then (good points))
(not (damaged points) 1)

(phrase-question (point gap off)
"Does a dwell meter indicate the point gap needs adjusting")
(phrase-question (damaged points)
"Do the points show pitting, excessive wear, or other signs
of damage")

(def ine-rule d6
(if (power at coil)

(good coil))
(then (power at distributor) 1)

(def ine-rule d6a
(if (good primary coil resistance)

(then (good coil)))
(good secondary coil resistance))

(phrase-question (good primary coil resistance)
"Does an ohmmeter indicate from 1 to 4 ohms of resistance

(phrase-question (good secondary coil resistance)
"Does an ohmmeter indicate from 4,000 to 10,000 ohms of

in the primary coil")

resistance in the secondary coil")

(def ine-rule d6
(if (power at distributor)

(good distributor))
(then (power at plugs)))

(def ine-rule d6a
(if (not (bad distributor cap)))
(then (good distributor))

(phrase-question (bad distributor cap)
"Does the distributor cap and rotor show signs of burning
or corrosion")

(def ine-rule d7
(if (power at solenoid)

(good solenoid))

129

130 Appendix G. Derived Expert System Rules for Diagnosis

(then (power at Starter)

(def ine-rule d7a
(if (jumped solenoid tarns normal)
(then (good solenoid)))

(phrase-question (jumped solenoid turns normal)
"Does the starter turn normally when a jumper is connected
between the battery and starter posts of the solenoidI1)

(def ine-rule d7b
(if (jumped solenoid starter buzz))
(then (good solenoid)))

(phrase-question (jumped solenoid starter buzz)
"Does the starter buzz or turn the engine slowly when a jumper
is connected between the battery and starter posts of the
solenoid")

(def ine-rule d7c
(if (not (jumped solenoid no response)))
(then (good solenoid)))

(phrase-question (jumped solenoid no response)
"Does the starter show no response when a jumper is connected
between the battery and starter posts of the solenoid")

(def ine-rule d8
(if (car fails to start)

(then (no start)))
(starter does not turn))

(phrase-question (car fails to start)
"Does your car fail to start")
(phrase-question (starter does not turn)
llDoes the starter fail to turn when the key is engaged")

(define-rule yl
(if (car fails to start)

(not (starter does not turn))
(power at battery)
(power at ignition)
(power at points)
(power at coil)
(power at distributor)
(power at plugs)
(not (good plugs) 1)

(then (replace plugs)))

(phrase-question (good plugs)
"Are the spark plugs undamagedll)

(define-rule y2
(if (car fails to start)

(not (starter does not turn))
(power at battery)
(power at ignition)
(power at points)
(power at coil)
(power at distributor)
(not (good distributor)))

(then (replace distributor)))

(define-rule y3
(if (car fails to start)

(not (starter does not turn))
(power at battery)
(power at ignition)
(power at points)
(power at coil)
(not (good coil) 1)

(then (replace coil) 1)

131

(def ine-rule y4
(if (car fails to start)

(not (starter does not turn))
(power at battery)
(power at ignition)

132 Appendix G. Derived Expert System Rules for Diagnosis

(power a t points)
(not (good points) 1)

(then (replace points))

(def ine-rule y6
(i f (car f a i l s t o start)

(s t a r t e r does not turn)
(power a t battery)
(power a t ignit ion)
(not (good igni t ion)))

(then (replace igni t ion)))

(def ine-rule y6
(i f (car fa i l s t o start)

(s t a r t e r does not turn)
(power a t battery)
(not (good battery) 1)

(then (replace battery) 1)

(def ine-rule y7
(if (car f a i l s t o start)

(s t a r t e r does not turn)
(not (power a t battery) 1)

(then (replace battery) 1)

(def ine-rule y8
(i f (car f a i l s t o s t a r t)

(s t a r t e r does not turn)
(power a t battery)
(power a t ignit ion)
(power a t solenoid)
(power a t s t a r t e r)
(not (good s t a r t e r) 1)

(then (replace s t a r t e r) 1)

(phrase-question (good s t a r t e r)
"Does the s t a r t e r meet specifications when removed
and bench tested")

133

(def ine-rule y!J
(if (car f a i l s t o start)

(starter does not turn)
(power at battery)
(power at ignition)
(power at solenoid)
(not (good solenoid)))

(then (replace solenoid)))

(hypo t he s is
(replace starter)
(replace solenoid)
(replace plugs)
(replace distributor)
(replace c o i l)
(replace points)
(replace ignition)
(replace battery) 1

134 Appendix G. Derived Expert System Rules for Diagnosis

Appendix H

Electrical System Formal
Specification

135

I

136 Appendix H. Electrical System Formal Specification

components: Module
Exporting battery, cells, ignition, points, coil, distributor,

Theory
component: TYPE
battery, cells, ignition, points, coil, distributor, plugs, solenoid,

c: VAR component

enum: Axiom

plugs, solenoid, starter, component

starter: component

(V c: c = battery
V c = cells

v c = ignition
v c = points

V c = coil
vc = distributorvc = plugsvc = solenoidvc = starter)

unique: Axiom
battery # cells

A battery # ignition
A battery # points
A battery # coil
A battery # distributor
A battery # plugs
A battery # solenoid
A battery # starter
A cells # ignition
A cells # points
A cells # coil
A cells # distributor
A cells # plugs
A cells # solenoid
A cells # starter
A ignition # points
A ignition # coil
A ignition # distributor
A ignition # plugs

.

137

A ignition # solenoid
A ignition # starter
A points # cod
A points # distributor
A points # plugs
A points # solenoid
A points # starter
A cod # distributor
A cod # plugs
A coil # solenoid
A cod # starter
A distributor # plugs
A distributor # solenoid
A distributor # starter
A plugs # solenoid
A plugs # starter
A solenoid # starter

End components

,

138 Appendix H. Electrical System Formal Specification

enginemodel: Module
Using components

Exporting powerat, good

Theory
c l , c2: VAR component
powerat: function[component + bool]
good: function[component boo11

elect ricals y s t emmodel: Axiom
(powerat(battery) good(cells))

A (power a t (ignition) * powerat (battery) A good(b8ttery))
A (powerat(points) powerat(ignition) A good(ignition))

A (powerat(coi1) -s powerat(points) A good(points))
A (powerat(distributor) powerat(coi1) h good(coi1))

A(power a t (plugs) 0 powerat (distributor) Agood(distributor))

A (power a t (solenoid) e powerat (ignition) Agood(ignition))

A (power a t (starter) e power a t (solenoid) Agood(solenoid))

singlefailure: Axiom lgood(c1) 3 (Vc2: c2 # c l 3 good(c2))

Proof
testl: Lemma ygood(coi1) 3 lpowerat(distribut0r) A 'power-at(p1ugs)

tlp: Prove testl from electricalsystemmodel

test2: Lemma -.power-at(ignition) 3 lpower-at(starter)

t2p: Prove test2 from electricalsystemmodel

test3: Lemma powerat(coi1) 3 powerat(battery) A good(ignition)

t3p: Prove test3 from electricalsystemmodel

End enginemodel

139

test: Module

Using components, enginemodel

Theory

batt: Lemma powerat(battery)

igni: Lemma powerat(igniti0n)

poin: Lemma powerat (points)

coil: Lemma power-at(coi1)

dist : Lemma power a t (distributor)

plug: Lemma powerat(p1ugs)

sole: Lemma powerat(so1enoid)

star: Lemma powerat(starter)

End test

140 Appendix H. Electrical System Formal Specification

predict: Module
Using components, enginemodel, test

Theory
comp: component = solenoid

cause: Axiom igood(comp)

Proof
powerat-batt: Prove test.batt from

cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl + comp, c2 + battery},
singlefailure {cl t comp, c2 + ignition},
singlefailure {cl t comp, c2 t points},
singlefailure {cl + comp, c2 + components.coil},
singlefailure {cl t comp, c2 +- distributor},
singlefailure {cl t comp, c2 t plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl + comp, c2 + starter}

poweratigni: Prove test.igni from
cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl t comp, c2 t battery},
singlefailure {cl + comp, c2 + ignition},
singlefailure {cl t comp, c2 t points},
singlefailure {cl t comp, c2 t components.coil},
singlefailure {cl t comp, c2 t distributor},
singlefailure {cl + comp, c2 + plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl t comp, c2 t starter}

powerat-poin: Prove test.poin from
cause,
electricalsystemmodel,

unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl t comp, c2 + battery},
singlefailure {cl + comp, c2 + ignition},
singlefailure {cl t comp, c2 t points},
singlefailure {cl +- comp, c2 + components.coil},
singlefailure {cl t comp, c2 t distributor},
singlefailure {cl + comp, c2 + plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl t comp, c2 t starter}

poweratxoil: Prove test .coil from
cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl 4- comp, c2 t battery},
singlefailure {cl + comp, c2 t ignition},
singlefailure {cl t comp, c2 t points},
singlefailure {cl t comp, c2 t components.coil},
singlefailure {cl t comp, c2 t distributor},
singlefailure {cl t comp, c2 t plugs},
singlefailure {cl + comp, c2 t solenoid},
singlefailure {cl +- comp, c2 t starter}

power-atdist: Prove test.dist from
cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl t comp, c2 t battery},
singlefailure {cl t comp, c2 t ignition},
singlefailure {cl + comp, c2 t points},
singlefailure {cl t comp, c2 t components.coil},
singlefailure {cl +- comp, c2
singlefailure {cl + comp, c2 t plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl + comp, c2 t starter}

distributor},

power-atplug: Prove test.plug from

141

142 Appendix H, Electrical System Formal Specification

cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl + comp, c2 + battery},
singlefailure {cl t comp, c2 t ignition},
singlefailure {cl + comp, c2 + points},
singlefailure {cl t comp, c2 +- components.coil},
singlefailure {cl t comp, c2 t distributor},
singlefailure {cl t comp, c2 t plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl + comp, c2 t starter}

poweratsole: Prove test.sole from
cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl + comp, c2 + battery},
singlefailure {cl t comp, c2 t ignition},
singlefailure {cl + comp, c2 +- points},
singlefailure {cl t comp, c2 t components.coil},
singlefailure {cl + comp, c2 t distributor},
singlefailure {cl t comp, c2 t plugs},
singlefailure {cl
singlefailure {cl t comp, c2 t starter}

comp, c2 + solenoid},

poweratstar: Prove teststar from
cause,
electricalsystemmodel,
unique,
singlefailure {cl t comp, c2 t cells},
singlefailure {cl t comp, c2 t battery},
singlefailure {cl t comp, c2 t ignition},
singlefailure {cl t comp, c2 t points},
singlefailure {cl +- comp, c2 t components.coil},
singlefailure {cl t comp, c2 t distributor},
singlefailure {cl t comp, c2 t plugs},
singlefailure {cl t comp, c2 t solenoid},
singlefailure {cl t comp, c2 t starter}

143

End predict

144 Appendix H. EIectrical System Formal Specification

Bibliography

[11 Introduction to EHDM. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA 94025, September 28, 1988.

[2] EHDM Specification and Verification System Version 4.1-Preliminary
Definition of the EHDM Specification Language. Computer Science
Laboratory, SRI International, Menlo Park, CA 94025, September 6,
1988.

[3] E H D M Specification and Verification System Version 4.1-User’s
Guide. Computer Science Laboratory, SRI International, Menlo Park,
CA 94025, November 29, 1988.

[4] B. Alpern and F.B. Schneider. Defining liveness. Information Process-
ing Letters, 21(4):181-185, October 1985.

[5] Debra Anderson and Charles Ortiz. AALPS: a knowledge-based system
for aircraft loading. IEEE Ezpert, 2(4):71-79, Winter 1987.

[6] A. Avi3ienis and J.C. Laprie. Dependable computing: from concepts
to design diversity. Proceedings of the IEEE, 74(6):629-638, May 1986.

[7] H. P. Barendregt. The Lambda Calculus, its Syntaz and Semantics.
North-Holland, Amsterdam, 1978.

[8] William R. Bevier. Kit: A Study in Operating System Verification.
Technical Report 28, Computational Logic Incorporated, Austin, TX,
August 1988.

[9] Marc Bezem. Consistency of rulebased expert systems. In 9th Interna-
tional Conference on Automated Deduction (CADE-9), pages 151-161,
Springer-Verlag Lecture Notes in Computer Science Vol. 310, Argonne,
IL, 1988.

145

146 Bibliography

[lo] Daniel G. Bobrow, editor. Qualitative Reasoning about Physical Sys-
tems. The MIT Press, Cambridge, MA., 1986.

[ll] Bruce G. Buchanan and Reid G. Smith. Fundamentals of expert sys-
tems. In Joseph F. naub , Barbara J. Grosz, Butler W. Lampson, and
Nils J. Nilsson, editors, Annual Review of Computer Science, Volume
3, pages 23-58, Annual Reviews, Inc., Palo Alto, CA., 1988.

[12] S. Cha, N.G. Leveson, T.J. Shimeall, and J.C. Knight. An empirical
study of software error detection using self-checks. In Digest of Papers,
FTCS 17, pages 156-161, IEEE Computer Society, Pittsburgh, PA.,
July 1987.

[13] William F. Clocksin and Christopher S. Mellish. Programming in Pro-
log. Springer-Verlag, New York, NY., 1981.

[14] A.J. Cohn. Correctness properties of the Viper block model: the second
level. In G. Birtwistle, editor, Proceeding8 of the 1988 Design Verifi-
cation Conference, Springer-Verlag, 1989. Also published as University
of Cambridge Computer Laboratory Technical Report No. 134.

[15] A.J. Cohn. A proof of correctness of the Viper microprocessor: the
first level. In G. Birtwistle and P.A. Subrahmanysm, editors, VLSI
Specification, Verification and Synthesis, pages 27-72, Kluwer, 1988.

[16] P.T. Cox and T. Pietrzykowski. Causes for events: their computation
and applications. In 8th International Conference on Automated De-
duction (CADE-81, pages 608-621, Springer-Verlag Lecture Notes in
Computer Science Vol. 230, Oxford, England, 1986.

[17] P.T. Cox and T, Pietrzykowski. General diagnosis by abductive
inference. In Proceedings 1987 Symposium on Logic Programming,
pages 183-189, IEEE Computer Society, San Francisco, CA., August
1987.

[18] Randall Davis and Walter Hamscher. Model-based reasoning: trou-
bleshooting. In Howard E. Shrobe, editor, Ezploring Artificial Intelli-
gence: Survey Talks from the National Conferences on Artificial Intel-
ligence, chapter 8, pages 297-346, Morgan Kaufmann Publishers, Inc,
San Mateo, CA., 1988.

Bibliography 147

[19] Saumya K. Debray and Prateek Mishra. Denotational and operation
semantics for Prolog. Journal of Logic Programming, 5(1):61-91, March
1988.

[20] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[21] Dave E. Eckhardt, Jr. and Larry D. Lee. A theoretical basis for the
analysis of multiversion software subject to coincident errors. IEEE
Transactions on Software Engineering, SE-11(12):1511-1517, December
1985.

[22] Im Flannagan. The consistency of negation as failure. The Journal of
Logic Programming, 3(2):93-114, July 1986.

[23] Charles L. Forgy. OPS5 User’s Manual. Technical Report CMU-CS-
81-135, Department of Computer Science, Carnegie-Mellon University,
Pittburgh, PA., July 1981.

[24] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann Publishers Inc., Los Altos,
CA., 1987.

[25] Allen Ginsberg. Knowledge-base reduction: a new approach to check-
ing knowledge-bases for inconsistency and redundancy. In Proceedings,
AAAI 88 (Volume 21, pages 585-589, Saint Paul, MN., August 1988.

[26] Joseph A. Goguen and Timothy Winkler. Introducing OBJ. Techni-
cal Report SRI-CSL-88-9, Computer Science Laboratory, SRI Intern*
tional, Menlo Park, CA., August 1988.

[27] M.J.C. Gordon. Mechanizing Programming Logics in Higher Order
Logic. Technical Report CCSRC-006, SRI International, Cambridge
Computer Science Research Centre, Suite 23, Millers Yard, Mill Lane,
Cambridge CB2 lRQ, England, September 1988.

[28] Paul Harmon and David King. Ezpert Systems: Artificial Intelligence
in Business. John Wiley and sons, New York, NY., 1985.

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12(10):576-583,1969.

148 Bibliography

[30] Warren A. Hunt, Jr. The Mechanical Verification of a Microproces-
sor Design. Technical Report 6, Computational Logic Incorporated,
Austin, TX, 1987.

[31] J.C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385-394, July 1976.

[32] J.C. Knight and N.G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE Trans-
actions on Software Engineering, SE-12(1):96-109, January 1986.

I331 D.E. Knuth and P.B. Bendix. Simple word problems in universal alge-
bras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-293, Pergamon, New York, NY., 1970.

[34] Wm Leler. Constraint Programming Languages: Their Specification

[35] Nancy G . Leveson. Software safety: Why, what and how. ACM Com-
puting Surveys, 18(2):125-163, June 1986.

[36] A. Lew. Proof of correctness of decision table programs. Computer
Journal, 27(3):230-232,1984.

[37] B. Littlewood and D.R. Miller. A conceptual model of multi-version
software. In Digest of Papers, FTCS 17, pages 150-155, IEEE Com-
puter Society, Pittsburgh, PA, July 1987.

and Generution. Addison-Wesley, Reading, MA., 1988.

[38] R. Maes and J.E.M. van Dijk. On the role of ambiguity and incomplete-
ness in the design of decision tables and rule-based systems. Computer
Journal, 31(6):481-489,1988.

[39] J Strother Moore. A Mechanically Verified Language Implementation.
Technical Report 30, Computational Logic Incorporated, Austin, TX,
September 1988.

[40] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Design Verification
of SIFT. Contractor Report 4097, NASA Langley Research Center,
Hampton, VA., September 1987.

[41] Dana S. Nau and James A. Reggia. Relationships between deductive
and abductive inference in knowledge-based diagnostic problem solving.
In Larry Kerschberg, editor, Ezpert Database Systems, pages 549-558,
Benjamin Cummings, 1986.

Bibliography 149

[42] Tin A. Nguyen, Walton A. Perkins, Thomas J. Ldey, and Deanne Pec-
ora. Knowledge base verification. A I Magazine, 8(2):65-79, Summer
1987.

[43] David L. Parnas. Software aspects of strategic defense systems. Amer-
ican Scientist, 73(5):432-440, September-October 1985.

[44] D.A. Pearce. The induction of fault diagnosis systems from qualitative
models. In Proceedings, AAAI 88 (Volume l) , pages 353-357, Saint
Paul, MN., August 1988.

[45] Harry E. Pople, Jr. On the mechanization of abductive logic. In Pro-
ceedings 3rd IJCAI, pages 147-152, Stanford, CA., August 1973.

[46] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32:57-95,1987.

[47] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theo-
rems. Journal of the ACM, 20(1):160-187, January 1973.

[48] John Rushby. Quality measures and Assurance for AI Software. Tech-
nical Report SRI-CSG88-7R, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA., September 1988. (Final Report for SRI
Project 4616, Task 5, NASA Contract NSAl 17067), also available as
NASA Contractor Report 4187.

[49] Jospeh R. Shoenfield. Mathematical Logic. Addison- Wesley, Reading,
MA., 1967.

(501 Robert E . Shostak. A n EDcient Decision Procedure for Arithmetic Unth
Function Symbole. Technical Report CSL-65, Computer Science Lab,
SRI International, September 1977.

[51] Robert E. Shostak. On the SUP-INF method for proving Presburger
formulas. Journal of the ACM, 24(4):529-543, October 1977.

[52] Mark E. Stickel. A Prolog-like Inference System for Computing
Minimum- Cost Abductive Explanations in Natural-Language Interpre-
tation. Technical Note 451, Artificial Intelligence Center, SRI Inter-
national, Menlo Park, CA., September 1988. Also presented at the
International Computer Science Conference '88, Hong Kong, December
1988.

I

150 Bibliography

[53] Motoi Suwa, A. Carlisle Scott, and Edward H. Shortliffe. An approach
to verifying completeness and consistency in a rule-based expert system.
A I Magazine, 3(4):16-21, Fall 1982.

[54] Alan F. Turner, editor. Chilton’s Import Car Repair Manual 1983.
Chilton Book Company, Chilton Way, Radnor, PA, 1982.

[55] F.W.von Henke, J.S. Crow, R. Lee, J.M. Rushby, and R.A. Whitehurst.
The EHDM verification environment: an overview. In Proceedings 11th
National Computer Security Conference, pages 147-155, NBS/NCSC,
Baltimore, MD., October 1988.

[56] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison
Wesley, Reading, Massachusetts, 1 edition, 1981. ISBN 0-201-083299.

Report Documentation Page
1. Report No.

NASA CR-181827

3. Recipient's Catalog No.

5. Report Date

February 28, 1989
6. Performing Organization Code

2. Government Accession No.

Expert Systems
Constraint Satisfaction
Model Inversion

I
4. Title and Subtitle

Subject Category 61

Formal Verification of AI Software

7. Authodsl

John Rushby, R. Alan Whitehurst

9. Performing Organization Name and Address

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

5. Supplementary Notes

8. Performing Organization Report No.

10. Work Unit No.

549-03-31-03
11. Contract or Grant No.

NAS1-18226
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

Technical Monitor:
Task 5 Fina l Report

Sally C. Johnson, Langley Research Center

6. Abstract

The application of formal verification techniques to AI software, particularly
expert systems, is investigated. Constraint satisfaction and model inversion
are identified as two formal specification paradigms for different classes of
expert systems.
of approximate semantics is introduced.
can be applied in both declarative and imperative forms.

A formal definition of consistency is developed, and the notion
Examples are given of how-these ideas

7. Key Words (Suggested by Author(s)) I 18. Distribution Statement
Formal Verification
Artificial Intelligence

1 Unclassified-Unlimi ted

Unclassified I Unclassified 1 158
I I I

4SA FORM lG!6 OCT 86

